Your browser doesn't support javascript.
loading
Transforming growth factor-ß1 attenuates inflammation and lung injury with regulating immune function in ventilator-induced lung injury mice.
Jing, Ren; He, Sheng; Liao, Xiao-Ting; Xie, Xian-Long; Mo, Jian-Lan; Hu, Zhao-Kun; Dai, Hui-Jun; Pan, Ling-Hui.
Afiliação
  • Jing R; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China;
  • He S; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China;
  • Liao XT; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China;
  • Xie XL; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China;
  • Mo JL; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China;
  • Hu ZK; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China;
  • Dai HJ; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China;
  • Pan LH; Department of Anesthesiology, Guangxi Medical University Cancer Hospital, Nanning, China; Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, Nanning, China; Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Dysfunction, Nanning, China;
Int Immunopharmacol ; 114: 109462, 2023 Jan.
Article em En | MEDLINE | ID: mdl-36476487
ABSTRACT
Ventilator-induced lung injury (VILI) is a lung injury induced or aggravated by mechanical ventilation. Transforming growth factor (TGF)-ß1 is a cytokine that mediates immune function, enabling inflammatory attenuation and tissue repair. Here, we hypothesized that it plays an important role in the attenuation of VILI and inflammation. Ventilation with high tidal volume was performed on C57BL/6 mice to establish a VILI model. After 4 h of ventilation, mice were sacrificed (end of ventilation [EOV]) or extubated for resuscitation at 4 h (post-ventilation 4 h [PV4h]), 8 h (PV8h) and 24 h post-ventilation (PV1d). Recombinant mouse TGF-ß1 (rTGF-ß1) and the neutralization antibody of TGF-ß1 (nTAb) were used in vivo to examine the effect of TGF-ß1 on immune function and inflammatory attenuation in VILI mice. Lung injury was exacerbated at the same trend as the interleukin (IL)-1ß level, peaking at PV1d, whereas IL-6 and tumor necrosis factor (TNF)-α levels gradually reduced. Most active phagosomes, swollen round mitochondria, and cavitating lamellar bodies were observed at PV4h. The CD4+ T cells were significantly increased from PV4h to PV1d, and the CD8a + T cells were higher in the PV4h and PV1d groups; furthermore, the mice in the PV8h group showed highest proportion of CD4+CD8a+ T cells and CD4+/CD8a+ ratio. CD19 + and CD5 + CD19 + B cells in VILI mice began to increase at PV1d. The pulmonary expression of latent and monomer TGF-ß1 increased at PV4h and PV8h. Treatment of rTGF-ß1 only induced high expression of latent and monomer TGF-ß1 at EOV to decrease pulmonary levels of IL-1ß, IL-6, and TNF-α; however, lung injury attenuated from EOV to PV1d. TGF-ß1 induced the delayed elevation of CD4+/CD8a+ T cells ratio and activation of pulmonary CD4+CD8a+ double-positive T cells under certain conditions. Elastic fibers and celluloses, although relatively less proteoglycan, were observed with the overexpression of TGF-ß1 at PV4h and PV8h. In conclusion, TGF-ß1 attenuates the inflammatory response and lung injury of VILI via immune function regulation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fator de Crescimento Transformador beta1 / Lesão Pulmonar Induzida por Ventilação Mecânica Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Int Immunopharmacol Assunto da revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fator de Crescimento Transformador beta1 / Lesão Pulmonar Induzida por Ventilação Mecânica Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Int Immunopharmacol Assunto da revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Ano de publicação: 2023 Tipo de documento: Article