Your browser doesn't support javascript.
loading
Filamentous Bacteria and Stalked Ciliates for the Stable Structure of Aerobic Granular Sludge Treating Wastewater.
Liang, Yifan; Pan, Zengrui; Guo, Tao; Feng, Hongbo; Yan, Anqi; Ni, Yongjiong; Li, Jun.
Afiliação
  • Liang Y; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
  • Pan Z; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
  • Guo T; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
  • Feng H; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
  • Yan A; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
  • Ni Y; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
  • Li J; Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
Article em En | MEDLINE | ID: mdl-36497821
ABSTRACT
Aerobic granular sludge (AGS) is a promising technology for wastewater treatment. AGS formation belongs to microbial self-aggregation. Investigation of the formation and stability of AGS is widely paid attention to, in particular the structure stability of large size granules. Two types of AGS were developed in two sequencing batch reactors fed by two different wastewaters, respectively. Through confocal laser scanning microscope (CLSM) and scanning electron microscopy (SEM), the structure and composition of granules were analyzed. Filamentous bacteria were observed in granules from synthetic wastewater reactor, while filamentous bacteria and stalked ciliates (Epistylis sp.) were simultaneously found in granules from domestic wastewater reactor. The analytic results show that filamentous bacteria and stalked ciliates acting as skeletons play important roles in the formation and stability of granules. With the bonding of extracellular polymeric substances (EPS), the filamentous bacteria and stalked ciliates could build bridges and frames to promote the aggregation of bacteria; these microorganisms could create a space grid structure around the surface layer of granules to enhance the strength of granules, and the remnants of the stalks could serve as supports to fix the steadiness of granules.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Esgotos / Águas Residuárias Idioma: En Revista: Int J Environ Res Public Health Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Esgotos / Águas Residuárias Idioma: En Revista: Int J Environ Res Public Health Ano de publicação: 2022 Tipo de documento: Article País de afiliação: China
...