Your browser doesn't support javascript.
loading
Surface programmed bacteria as photo-controlled NO generator for tumor immunological and gas therapy.
Chen, Baizhu; Zhang, Xiaoge; Cheng, Lili; Chen, Xiaomei; Tang, Junjie; Zhang, Peng; Wang, Chen; Liu, Jie.
Afiliação
  • Chen B; School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun
  • Zhang X; School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China.
  • Cheng L; School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China.
  • Chen X; School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China.
  • Tang J; School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China.
  • Zhang P; School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China.
  • Wang C; School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China.
  • Liu J; School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, PR China. Electronic address: liujie56@mail.sysu.edu.cn.
J Control Release ; 353: 889-902, 2023 01.
Article em En | MEDLINE | ID: mdl-36528194
ABSTRACT
The use of bacteria as living vehicles has attracted increasing attentions in tumor therapy field. The combination of functional materials with bacteria dramatically facilitates the antitumor effect. Here, we presented a rationally designed living system formed by programmed Escherichia Coli MG1655 cells (Ec) and black phosphorus (BP) nanoparticles (NPs). The bacteria were genetically engineered to express tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), via an outer membrane YiaT protein (Ec-T). The Ec-T cells were associated with BP NPs on their surface to acquire BP@Ec-T. The designed living system could transfer the photoelectrons produced by BP NPs after laser irradiation and triggered the reductive metabolism of nitrate to nitric oxide for the in situ release at tumor sites, facilitating the therapeutic efficacy and the polarization of tumor associated macrophages to M1 phenotype. Meanwhile, the generation of reactive oxygen species induced the immunogenic cell death to further improve the antitumor efficacy. Additionally, the living system enhanced the immunological effect by promoting the apoptosis of tumor cells, activating the effect of T lymphocytes and releasing the pro-inflammatory cytokines. The integration of BP NPs, MG1655 cells and TRAIL led to an effective tumor therapy. Our work established an approach for the multifunctional antitumor living therapy.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Apoptose / Escherichia coli / Ligante Indutor de Apoptose Relacionado a TNF / Neoplasias Limite: Humans Idioma: En Revista: J Control Release Assunto da revista: FARMACOLOGIA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Apoptose / Escherichia coli / Ligante Indutor de Apoptose Relacionado a TNF / Neoplasias Limite: Humans Idioma: En Revista: J Control Release Assunto da revista: FARMACOLOGIA Ano de publicação: 2023 Tipo de documento: Article