Your browser doesn't support javascript.
loading
Dopant-Free Polymer Hole Transport Materials for Highly Stable and Efficient CsPbI3 Perovskite Solar Cells.
Zhang, Zelong; Fu, Jianfei; Chen, Qiaoyun; Zhang, Jiajia; Huang, Zhezhi; Cao, Ji; Ji, Wenxi; Zhang, Longgui; Wang, Ailian; Zhou, Yi; Dong, Bin; Song, Bo.
Afiliação
  • Zhang Z; Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Fu J; Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Chen Q; Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Zhang J; Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Huang Z; Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Cao J; Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Ji W; Beijing Research Institute of Chemical Industry China Petroleum & Chemical Corporation, Beijing, 100013, China.
  • Zhang L; Beijing Research Institute of Chemical Industry China Petroleum & Chemical Corporation, Beijing, 100013, China.
  • Wang A; Beijing Research Institute of Chemical Industry China Petroleum & Chemical Corporation, Beijing, 100013, China.
  • Zhou Y; Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
  • Dong B; Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China.
  • Song B; Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
Small ; 19(11): e2206952, 2023 Mar.
Article em En | MEDLINE | ID: mdl-36541718
ABSTRACT
All-inorganic perovskite CsPbI3 contains no volatile organic components and is a thermally stable photoactive material for wide-bandgap perovskite solar cells (PSCs); however, CsPbI3 readily undergoes undesirable phase transitions due to the hygroscopic nature of the ionic dopants used in commonly used hole transport materials. In the current study, the popular donor material PM6 in organic solar cells is used as a hole transport layer (HTL). The benzodithiophene-based backbone-conjugated polymer requires no dopant and leads to a higher power conversion efficiency (PCE) than 2,2',7,7'-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9'-spirobifluorene (Spiro-OMeTAD). Moreover, PM6 also shows priorities in hole mobility, hydrophobicity, cascade energy level alignment, and even defect passivation of perovskite films. With PM6 as the dopant-free HTL, the PSCs achieve a champion PCE of 18.27% with a competitive fill factor of 82.8%. Notably, the present PCE is based on the dopant-free HTL in CsPbI3 PSCs reported thus far. The PSCs with PM6 as the HTL retain over 90% of the initial PCE stored in a glovebox filled with N2 for 3000 h. In contrast, the PSCs with Spiro-OMeTAD as the HTL maintain ≈80% of the initial PCE under the same conditions.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China