Your browser doesn't support javascript.
loading
Experimental evidence of early-time saturation of the ion-Weibel instability in counterstreaming plasmas of CH, Al, and Cu.
Manuel, M J-E; Adams, M B P; Ghosh, S; Beg, F N; Bolaños, S; Huntington, C M; Jonnalagadda, R; Kawahito, D; Pollock, B B; Remington, B A; Ross, J S; Ryutov, D D; Sio, H; Swadling, G F; Tzeferacos, P; Park, H-S.
Afiliação
  • Manuel MJ; General Atomics, San Diego, California 92121, USA.
  • Adams MBP; University of Rochester, Rochester, New York 14627, USA.
  • Ghosh S; University of California San Diego, San Diego, California 92093, USA.
  • Beg FN; University of California San Diego, San Diego, California 92093, USA.
  • Bolaños S; University of California San Diego, San Diego, California 92093, USA.
  • Huntington CM; Lawrence Livermore National Laboratory, Livermore, California 94450, USA.
  • Jonnalagadda R; University of California San Diego, San Diego, California 92093, USA.
  • Kawahito D; University of California San Diego, San Diego, California 92093, USA.
  • Pollock BB; Lawrence Livermore National Laboratory, Livermore, California 94450, USA.
  • Remington BA; Lawrence Livermore National Laboratory, Livermore, California 94450, USA.
  • Ross JS; Lawrence Livermore National Laboratory, Livermore, California 94450, USA.
  • Ryutov DD; Lawrence Livermore National Laboratory, Livermore, California 94450, USA.
  • Sio H; Lawrence Livermore National Laboratory, Livermore, California 94450, USA.
  • Swadling GF; Lawrence Livermore National Laboratory, Livermore, California 94450, USA.
  • Tzeferacos P; University of Rochester, Rochester, New York 14627, USA.
  • Park HS; Lawrence Livermore National Laboratory, Livermore, California 94450, USA.
Phys Rev E ; 106(5-2): 055205, 2022 Nov.
Article em En | MEDLINE | ID: mdl-36559494
ABSTRACT
The collisionless ion-Weibel instability is a leading candidate mechanism for the formation of collisionless shocks in many astrophysical systems, where the typical distance between particle collisions is much larger than the system size. Multiple laboratory experiments aimed at studying this process utilize laser-driven (I≳10^{15} W/cm^{2}), counterstreaming plasma flows (V≲2000 km/s) to create conditions unstable to Weibel-filamentation and growth. This technique intrinsically produces temporally varying plasma conditions at the midplane of the interaction where Weibel-driven B fields are generated and studied. Experiments discussed herein demonstrate robust formation of Weibel-driven B fields under multiple plasma conditions using CH, Al, and Cu plasmas. Linear theory based on benchmarked radiation-hydrodynamic FLASH calculations is compared with Fourier analyses of proton images taken ∼5-6 linear growth times into the evolution. The new analyses presented here indicate that the low-density, high-velocity plasma-conditions present during the first linear-growth time (∼300-500 ps) sets the spectral characteristics of Weibel filaments during the entire evolution. It is shown that the dominant wavelength (∼300µm) at saturation persists well into the nonlinear phase, consistent with theory under these experimental conditions. However, estimates of B-field strength, while difficult to determine accurately due to the path-integrated nature of proton imaging, are shown to be in the ∼10-30 T range, an order of magnitude above the expected saturation limit in homogenous plamas but consistent with enhanced B fields in the midplane due to temporally varying plasma conditions in experiments.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev E Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev E Ano de publicação: 2022 Tipo de documento: Article País de afiliação: Estados Unidos