Your browser doesn't support javascript.
loading
Understanding cellular growth strategies via optimal control.
Mononen, Tommi; Kuosmanen, Teemu; Cairns, Johannes; Mustonen, Ville.
Afiliação
  • Mononen T; Department of Computer Science, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki 00014, Finland.
  • Kuosmanen T; Department of Computer Science, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki 00014, Finland.
  • Cairns J; Department of Computer Science, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki 00014, Finland.
  • Mustonen V; Department of Computer Science, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki 00014, Finland.
J R Soc Interface ; 20(198): 20220744, 2023 01.
Article em En | MEDLINE | ID: mdl-36596459
Evolutionary prediction and control are increasingly interesting research topics that are expanding to new areas of application. Unravelling and anticipating successful adaptations to different selection pressures becomes crucial when steering rapidly evolving cancer or microbial populations towards a chosen target. Here we introduce and apply a rich theoretical framework of optimal control to understand adaptive use of traits, which in turn allows eco-evolutionarily informed population control. Using adaptive metabolism and microbial experimental evolution as a case study, we show how demographic stochasticity alone can lead to lag time evolution, which appears as an emergent property in our model. We further show that the cycle length used in serial transfer experiments has practical importance as it may cause unintentional selection for specific growth strategies and lag times. Finally, we show how frequency-dependent selection can be incorporated to the state-dependent optimal control framework allowing the modelling of complex eco-evolutionary dynamics. Our study demonstrates the utility of optimal control theory in elucidating organismal adaptations and the intrinsic decision making of cellular communities with high adaptive potential.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adaptação Fisiológica / Evolução Biológica Tipo de estudo: Prognostic_studies Idioma: En Revista: J R Soc Interface Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Finlândia País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adaptação Fisiológica / Evolução Biológica Tipo de estudo: Prognostic_studies Idioma: En Revista: J R Soc Interface Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Finlândia País de publicação: Reino Unido