Enhanced Oxide Ion Conductivity by Ta Doping of Ba3Nb1-xTaxMoO8.5.
Inorg Chem
; 62(4): 1628-1635, 2023 Jan 30.
Article
em En
| MEDLINE
| ID: mdl-36650095
Significant oxide ion conductivity has previously been reported for the Ba3M'Mâ³O8.5 family (M' = Nb5+, V5+; Mâ³ = Mo6+, W6+) of cation-deficient hexagonal perovskite derivatives. These systems exhibit considerable structural disorder and competitive occupation of two distinct oxygen positions (O3 site and O2 site), enabling two-dimensional (2D) ionic conductivity within the ab plane of the structure; higher occupation of the tetrahedral O3 site vs the octahedral O2 site is known to be a major factor that promotes oxide ion conductivity. Previous chemical doping studies have shown that substitution of small amounts of the M' or Mâ³ ions can result in significant changes to both the structure and ionic conductivity. Here, we report on the electrical and structural properties of the Ba3Nb1-xTaxMoO8.5 series (x = 0.00, 0.025, 0.050, 0.100). AC impedance measurements show that substitution of Nb5+ with Ta5+ leads to a significant increase in low-temperature (<500 °C) conductivity for x = 0.1. Analysis of neutron and X-ray diffraction (XRD) data confirms that there is a decrease in the M1O4/M1O6 ratio upon increasing x from 0 to 0.1 in Ba3Nb1-xTaxMoO8.5, which would usually coincide with a lowering in the conductivity. However, neutron diffraction results show that Ta doping causes an increase in the oxide ion conductivity as a result of longer M1-O3 bonds and increased polyhedral distortion.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Inorg Chem
Ano de publicação:
2023
Tipo de documento:
Article
País de publicação:
Estados Unidos