Your browser doesn't support javascript.
loading
Simulation of higher-order topological phases and related topological phase transitions in a superconducting qubit.
Niu, Jingjing; Yan, Tongxing; Zhou, Yuxuan; Tao, Ziyu; Li, Xiaole; Liu, Weiyang; Zhang, Libo; Jia, Hao; Liu, Song; Yan, Zhongbo; Chen, Yuanzhen; Yu, Dapeng.
Afiliação
  • Niu J; Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shen
  • Yan T; Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shen
  • Zhou Y; Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shen
  • Tao Z; Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shen
  • Li X; Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shen
  • Liu W; Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shen
  • Zhang L; Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shen
  • Jia H; Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shen
  • Liu S; Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shen
  • Yan Z; School of Physics, Sun Yat-sen University, Guangzhou 510275, China. Electronic address: yanzhb5@mail.sysu.edu.cn.
  • Chen Y; Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shen
  • Yu D; Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shen
Sci Bull (Beijing) ; 66(12): 1168-1175, 2021 Jun 30.
Article em En | MEDLINE | ID: mdl-36654354
ABSTRACT
Higher-order topological phases give rise to new bulk and boundary physics, as well as new classes of topological phase transitions. While the realization of higher-order topological phases has been confirmed in many platforms by detecting the existence of gapless boundary modes, a direct determination of the higher-order topology and related topological phase transitions through the bulk in experiments has still been lacking. To bridge the gap, in this work we carry out the simulation of a two-dimensional second-order topological phase in a superconducting qubit. Owing to the great flexibility and controllability of the quantum simulator, we observe the realization of higher-order topology directly through the measurement of the pseudo-spin texture in momentum space of the bulk for the first time, in sharp contrast to previous experiments based on the detection of gapless boundary modes in real space. Also through the measurement of the evolution of pseudo-spin texture with parameters, we further observe novel topological phase transitions from the second-order topological phase to the trivial phase, as well as to the first-order topological phase with nonzero Chern number. Our work sheds new light on the study of higher-order topological phases and topological phase transitions.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Bull (Beijing) Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Bull (Beijing) Ano de publicação: 2021 Tipo de documento: Article