Your browser doesn't support javascript.
loading
Facile self-template fabrication of hierarchical nickel-cobalt phosphide hollow nanoflowers with enhanced hydrogen generation performance.
Liu, Xupo; Deng, Shaofeng; Liu, Peifang; Liang, Jianing; Gong, Mingxing; Lai, Chenglong; Lu, Yun; Zhao, Tonghui; Wang, Deli.
Afiliação
  • Liu X; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
  • Deng S; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
  • Liu P; Analysis & Testing Center of Xinyang Normal University, Xinyang 464000, China.
  • Liang J; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
  • Gong M; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
  • Lai C; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
  • Lu Y; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
  • Zhao T; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
  • Wang D; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China. Electronic address: wangdl8
Sci Bull (Beijing) ; 64(22): 1675-1684, 2019 Nov 30.
Article em En | MEDLINE | ID: mdl-36659781
ABSTRACT
Developing facile methods to construct hierarchical-structured transition metal phosphides is beneficial for achieving high-efficiency hydrogen evolution catalysts. Herein, a self-template strategy of hydrothermal treatment of solid Ni-Co glycerate nanospheres followed by phosphorization is delivered to synthesize hierarchical NiCoP hollow nanoflowers with ultrathin nanosheet assembly. The microstructure of NiCoP can be availably tailored by adjusting the hydrothermal treatment temperature through affecting the hydrolysis process of Ni-Co glycerate nanospheres and the occurred Kirkendall effect. Benefitting from the promoted exposure of active sites and affluent mass diffusion routes, the HER performance of the NiCoP hollow nanoflowers has been obviously enhanced in contrast with the solid NiCoP nanospheres. The fabricated NiCoP hollow nanoflowers yield the current density of 10 mA cm-2 at small overpotentials of 95 and 127 mV in 0.5 mol L-1 H2SO4 and 1.0 mol L-1 KOH solution, respectively. Moreover, the two-electrode alkaline cell assembled with the NiCoP and Ir/C catalysts exhibits sustainable stability for overall water splitting. The work provides a simple but efficient method to regulate the microstructure of transition metal phosphides, which is helpful for achieving high-performance hydrogen evolution catalysts based on solid-state metal alkoxides.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Bull (Beijing) Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Bull (Beijing) Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China