Your browser doesn't support javascript.
loading
Nanosizing Approach-A Case Study on the Thermal Decomposition of Hydrazine Borane.
Abu Osman, Nur Ain; Nordin, Nor Izzati; Tan, Khai Chen; Hosri, Nur Aida Hanisa An; Pei, Qijun; Ng, Eng Poh; Othman, Muhammad Bisyrul Hafi; Ismail, Mohammad; He, Teng; Chua, Yong Shen.
Afiliação
  • Abu Osman NA; Hydrogen Energy Storage Research Group, School of Chemical Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia.
  • Nordin NI; Hydrogen Energy Storage Research Group, School of Chemical Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia.
  • Tan KC; Hydrogen Energy Storage Research Group, School of Chemical Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia.
  • Hosri NAHA; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
  • Pei Q; Hydrogen Energy Storage Research Group, School of Chemical Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia.
  • Ng EP; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
  • Othman MBH; Hydrogen Energy Storage Research Group, School of Chemical Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia.
  • Ismail M; Hydrogen Energy Storage Research Group, School of Chemical Sciences, Universiti Sains Malaysia (USM), Penang 11800, Malaysia.
  • He T; Energy Storage Research Group, Faculty of Ocean Engineering Technology and Informatics, University Malaysia Terengganu, Kuala Nerus 21030, Malaysia.
  • Chua YS; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Materials (Basel) ; 16(2)2023 Jan 16.
Article em En | MEDLINE | ID: mdl-36676604
Hydrazine borane (HB) is a chemical hydrogen storage material with high gravimetric hydrogen density of 15.4 wt%, containing both protic and hydridic hydrogen. However, its limitation is the formation of unfavorable gaseous by-products, such as hydrazine (N2H4) and ammonia (NH3), which are poisons to fuel cell catalyst, upon pyrolysis. Previous studies proved that confinement of ammonia borane (AB) greatly improved the dehydrogenation kinetics and thermodynamics. They function by reducing the particle size of AB and establishing bonds between silica functional groups and AB molecules. In current study, we employed the same strategy using MCM-41 and silica aerogel to investigate the effect of nanosizing towards the hydrogen storage properties of HB. Different loading of HB to the porous supports were investigated and optimized. The optimized loading of HB in MCM-41 and silica aerogel was 1:1 and 0.25:1, respectively. Both confined samples demonstrated great suppression of melting induced sample foaming. However, by-products formation was enhanced over dehydrogenation in an open system decomposition owing to the presence of extensive Si-O···BH3(HB) coordination that further promote the B-N bond cleavage to release N2H4. The Si-OH···N(N2H4) hydrogen bonding may further promote N-N bond cleavage in the resulting N2H4, facilitating the formation of NH3. As temperature increases, the remaining N-N-B oligomeric chains in the porous silica, which are lacking the long-range structure may further undergo intramolecular B-N or N-N cleavage to release substantial amount of N2H4 or NH3. Besides open system decomposition, we also reported a closed system decomposition where complete utilization of the N-H from the released N2H4 and NH3 in the secondary reaction can be achieved, releasing mainly hydrogen upon being heated up to high temperatures. Nanosizing of HB particles via PMMA encapsulation was also attempted. Despite the ester functional group that may favor multiple coordination with HB molecules, these interactions did not impart significant change towards the decomposition of HB selectively towards dehydrogenation.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Materials (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Malásia País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Materials (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Malásia País de publicação: Suíça