Your browser doesn't support javascript.
loading
Assessing data mining algorithms to predict the quality of groundwater resources for determining irrigation hazard.
Masoudi, Reyhaneh; Mousavi, Seyed Roohollah; Rahimabadi, Pouyan Dehghan; Panahi, Mehdi; Rahmani, Asghar.
Afiliação
  • Masoudi R; University of Tehran, Tehran, Iran. r.masoudi@ut.ac.ir.
  • Mousavi SR; University of Tehran, Tehran, Iran.
  • Rahimabadi PD; University of Tehran, Tehran, Iran.
  • Panahi M; Water Engineering Department, Faculty of Agriculture, University of Zanjan, Zanjan, Iran.
  • Rahmani A; University of Tehran, Tehran, Iran.
Environ Monit Assess ; 195(2): 319, 2023 Jan 23.
Article em En | MEDLINE | ID: mdl-36683118
This study aims to compare three popular machine learning (ML) algorithms including random forest (RF), boosting regression tree (BRT), and multinomial logistic regression (MnLR) for spatial prediction of groundwater quality classes and mapping it for salinity hazard. Three hundred eighty-six groundwater samples were collected from an agriculturally intensive area in Fars Province, Iran, and nine hydro-chemical parameters were defined and interpreted. Variance inflation factor and Pearson's correlations were used to check collinearity between variables. Thereinafter, the performance of ML models was evaluated by statistical indices, namely, overall accuracy (OA) and Kappa index obtained from the confusion matrix. The results showed that the RF model was more accurate than other models with the slight difference. Moreover, the analysis of relative importance also indicated that sodium adsorption ratio (SAR) and pH have the most impact parameters in explaining groundwater quality classes, respectively. In this research, applied ML algorithms along with the hydro-chemical parameters affecting the quality of ground water can lead to produce spatial distribution maps with high accuracy for managing irrigation practice.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Água Subterrânea Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Environ Monit Assess Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Irã País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Água Subterrânea Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Environ Monit Assess Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Irã País de publicação: Holanda