Your browser doesn't support javascript.
loading
UVA1 irradiation attenuates collagen production via Ficz/AhR/MAPK signaling activation in scleroderma.
Shi, Yaqian; Xiao, Yangfan; Yu, Jiangfan; Liu, Jiani; Liu, Licong; Ding, Yan; Qiu, Xiangning; Zhan, Yi; Tang, Rui; Zeng, Zhuotong; Xiao, Rong.
Afiliação
  • Shi Y; Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
  • Xiao Y; Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
  • Yu J; Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
  • Liu J; Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
  • Liu L; Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
  • Ding Y; Department of Dermatology, Hainan Provincial Hospital of Skin Disease, Haikou, Hainan 570100, China.
  • Qiu X; Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
  • Zhan Y; Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
  • Tang R; Department of Rheumatology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410000, China.
  • Zeng Z; Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. Electronic address: zengzhuotong@csu.edu.cn.
  • Xiao R; Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Key Laboratory of Medical Epigenetics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China. Electronic address: xiaorong65@csu.edu.cn.
Int Immunopharmacol ; 116: 109764, 2023 Mar.
Article em En | MEDLINE | ID: mdl-36706594
Scleroderma is an autoimmune disease mainly characterized by progressive fibrosis of the skin. There are two types of scleroderma, namely localized scleroderma (LS) and systemic sclerosis (SSc); skin lesions in both types of scleroderma are histologically identical. Progressive skin sclerosis induces psychological and ecological burden for scleroderma patients. However, there is no effective treatment for scleroderma due to its unclear etiology. Aryl hydrocarbon receptor (AhR) is recognized as an environmental chemical effector that can respond to ultraviolet radiation, which has been demonstrated to participate in the pathogenesis of SSc in our previous study. In this study, we verify whether the anti-fibrosis effect of ultraviolet A1 (UVA1) phototherapy could be partially induced through Ficz/AhR/MAPK signaling activation for fibrotic lesions in both SSc and LS patients. This is the first study to show the association between the AhR pathway and the anti-fibrotic mechanism of UVA1 phototherapy, which provides additional evidence of the role of AhR in the fibrotic mechanism of systemic scleroderma from different perspectives. Ficz and other AhR agonists may replace UVA1 phototherapy as anti-fibrotic agents in scleroderma.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Esclerodermia Localizada / Escleroderma Sistêmico Limite: Humans Idioma: En Revista: Int Immunopharmacol Assunto da revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Esclerodermia Localizada / Escleroderma Sistêmico Limite: Humans Idioma: En Revista: Int Immunopharmacol Assunto da revista: ALERGIA E IMUNOLOGIA / FARMACOLOGIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China País de publicação: Holanda