Your browser doesn't support javascript.
loading
Overexpression of CsATG3a improves tolerance to nitrogen deficiency and increases nitrogen use efficiency in arabidopsis.
Huang, Wei; Ma, Danni; Xia, Li; Zhang, E; Wang, Pu; Wang, Mingle; Guo, Fei; Wang, Yu; Ni, Dejiang; Zhao, Hua.
Afiliação
  • Huang W; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
  • Ma D; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
  • Xia L; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
  • Zhang E; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
  • Wang P; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
  • Wang M; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
  • Guo F; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
  • Wang Y; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China. Electronic address: catea37@mail.hzau.edu.cn
  • Ni D; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
  • Zhao H; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, PR China; College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China. Electronic address: zhaohua@mail.hzau.edu.cn
Plant Physiol Biochem ; 196: 328-338, 2023 Mar.
Article em En | MEDLINE | ID: mdl-36739840
ABSTRACT
Nitrogen (N) is a major nutrition element for tea plant. However, application of high levels of N negatively causes environmental problems. Therefore, improved N use efficiency (NUE) of tea plant will be highly desirable and crucial for sustainable tea cultivation. Autophagy plays a central role in N recycling and holds potential to improve N utilization, and many AuTophaGy-related genes (ATGs) are involved in the autophagy process. Here, CsATG3a was identified from Camellia sinensis, and the functions involved in N utilization was characterized in arabidopsis (Arabidopsis thaliana). The transcript level of CsATG3a in tea leaves increases with their maturity. Relative to the wild type (WT) arabidopsis, two CsATG3a-overexpressing (CsATG3a-OE) lines exhibited improved vegetative growth, delayed reproductive stage, and upregulated expression of AtATGs (AtATG3, AtATG5 and AtATG8b) in a low N (LN) hydroponic condition. The expression levels of AtNRT1.1, AtNRT2.1, AtNRT2.2, AtAMT1.1 and AtAMT1.3 for N uptake and transport in roots were all significantly higher in CsATG3a-OE lines compared with those in the WT under LN. Meanwhile, the overexpression of CsATG3a in arabidopsis also increased N and dry matter allocation into both rosette leaves and roots under LN. Additionally, compared with WT, improved HI (harvest index), NHI (N harvest index), NUtE (N utilization efficiency) and NUE (N use efficiency) of CsATG3a-OE lines were further confirmed in a low-N soil cultured experiment. Together, these results concluded that CsATG3a is involved in N recycling and enhances tolerance to LN, indicating that CsATG3a holds potential promise to improve NUE in tea plant.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arabidopsis Idioma: En Revista: Plant Physiol Biochem Assunto da revista: BIOQUIMICA / BOTANICA Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arabidopsis Idioma: En Revista: Plant Physiol Biochem Assunto da revista: BIOQUIMICA / BOTANICA Ano de publicação: 2023 Tipo de documento: Article