Your browser doesn't support javascript.
loading
CoOx nanoparticles loaded on carbon spheres with synergistic effects for effective inhibition of shuttle effect in Li-S batteries.
Chai, Ning; Qi, Yujie; Gu, Qinhua; Chen, Junnan; Lu, Ming; Zhang, Xia; Zhang, Bingsen.
Afiliação
  • Chai N; Department of Chemistry, College of Science, Northeastern University, Shenyang 110819, China. xzhang@mail.neu.edu.cn.
  • Qi Y; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China. bszhang@imr.ac.cn.
  • Gu Q; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China. bszhang@imr.ac.cn.
  • Chen J; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China.
  • Lu M; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China. bszhang@imr.ac.cn.
  • Zhang X; School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China.
  • Zhang B; Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China. bszhang@imr.ac.cn.
Nanoscale ; 15(11): 5327-5336, 2023 Mar 16.
Article em En | MEDLINE | ID: mdl-36811914
ABSTRACT
Lithium-sulfur (Li-S) batteries, as one of the new energy storage batteries, show immense potential due to their high theoretical specific capacity and theoretical energy density. However, there are still some problems to be solved, among which the shuttle effect of lithium polysulfides is one extremely serious issue with respect to the industrial application of Li-S batteries. Rational design of electrode materials with effective catalytic conversion ability is an effective route to accelerate the conversion of lithium polysulfides (LiPSs). Herein, considering the adsorption and catalysis of LiPSs, CoOx nanoparticles (NPs) loaded on carbon sphere composites (CoOx/CS) were designed and constructed as cathode materials. The CoOx NPs obtained, with ultralow weight ratio and uniform distribution, consist of CoO, Co3O4, and metallic Co. The polar CoO and Co3O4 enable chemical adsorption towards LiPSs through Co-S coordination, and the conductive metallic Co can improve electronic conductivity and reduce impedance, which is beneficial for ion diffusion at the cathode. Based on these synergistic effects, the CoOx/CS electrode exhibits accelerated redox kinetics and enhanced catalytic activity for conversion of LiPSs. Consequently, the CoOx/CS cathode delivers improved cycling performance, with an initial capacity of 980.8 mA h g-1 at 0.1C and a reversible specific capacity of 408.4 mA h g-1 after 200 cycles, along with enhanced rate performance. This work provides a facile route to construct cobalt-based catalytic electrodes for Li-S batteries, and promotes understanding of the LiPSs conversion mechanism.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China