Your browser doesn't support javascript.
loading
Graph-based quantum response theory and shadow Born-Oppenheimer molecular dynamics.
Negre, Christian F A; Wall, Michael E; Niklasson, Anders M N.
Afiliação
  • Negre CFA; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Wall ME; Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Niklasson AMN; Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
J Chem Phys ; 158(7): 074108, 2023 Feb 21.
Article em En | MEDLINE | ID: mdl-36813723
Graph-based linear scaling electronic structure theory for quantum-mechanical molecular dynamics simulations [A. M. N. Niklasson et al., J. Chem. Phys. 144, 234101 (2016)] is adapted to the most recent shadow potential formulations of extended Lagrangian Born-Oppenheimer molecular dynamics, including fractional molecular-orbital occupation numbers [A. M. N. Niklasson, J. Chem. Phys. 152, 104103 (2020) and A. M. N. Niklasson, Eur. Phys. J. B 94, 164 (2021)], which enables stable simulations of sensitive complex chemical systems with unsteady charge solutions. The proposed formulation includes a preconditioned Krylov subspace approximation for the integration of the extended electronic degrees of freedom, which requires quantum response calculations for electronic states with fractional occupation numbers. For the response calculations, we introduce a graph-based canonical quantum perturbation theory that can be performed with the same natural parallelism and linear scaling complexity as the graph-based electronic structure calculations for the unperturbed ground state. The proposed techniques are particularly well-suited for semi-empirical electronic structure theory, and the methods are demonstrated using self-consistent charge density-functional tight-binding theory both for the acceleration of self-consistent field calculations and for quantum-mechanical molecular dynamics simulations. Graph-based techniques combined with the semi-empirical theory enable stable simulations of large, complex chemical systems, including tens-of-thousands of atoms.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Chem Phys Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos