Your browser doesn't support javascript.
loading
A Three-Dimensional ResNet and Transformer-Based Approach to Anomaly Detection in Multivariate Temporal-Spatial Data.
Xu, Lijuan; Ding, Xiao; Zhao, Dawei; Liu, Alex X; Zhang, Zhen.
Afiliação
  • Xu L; Shandong Provincial Key Laboratory of Computer Networks, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
  • Ding X; Computer Science and Technology, Harbin Institute of Technology, Weihai 264209, China.
  • Zhao D; Technology Research Institute of Cyberspace Security of Harbin Institute, Harbin 150001, China.
  • Liu AX; Shandong Provincial Key Laboratory of Computer Networks, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
  • Zhang Z; Shandong Provincial Key Laboratory of Computer Networks, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
Entropy (Basel) ; 25(2)2023 Jan 17.
Article em En | MEDLINE | ID: mdl-36832547
Anomaly detection in multivariate time series is an important problem with applications in several domains. However, the key limitation of the approaches that have been proposed so far lies in the lack of a highly parallel model that can fuse temporal and spatial features. In this paper, we propose TDRT, a three-dimensional ResNet and transformer-based anomaly detection method. TDRT can automatically learn the multi-dimensional features of temporal-spatial data to improve the accuracy of anomaly detection. Using the TDRT method, we were able to obtain temporal-spatial correlations from multi-dimensional industrial control temporal-spatial data and quickly mine long-term dependencies. We compared the performance of five state-of-the-art algorithms on three datasets (SWaT, WADI, and BATADAL). TDRT achieves an average anomaly detection F1 score higher than 0.98 and a recall of 0.98, significantly outperforming five state-of-the-art anomaly detection methods.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Entropy (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Prognostic_studies Idioma: En Revista: Entropy (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China País de publicação: Suíça