Your browser doesn't support javascript.
loading
Engineering pancreatic islets with a novel form of thrombomodulin protein to overcome early graft loss triggered by instant blood-mediated inflammatory reaction.
Turan, Ali; Zhang, Lei; Tarique, Mohammad; Ulker, Vahap; Arguc, Feyza Nur; Badal, Darshan; Yolcu, Esma S; Shirwan, Haval.
Afiliação
  • Turan A; Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA.
  • Zhang L; Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA.
  • Tarique M; Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA.
  • Ulker V; Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA.
  • Arguc FN; Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA.
  • Badal D; Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA.
  • Yolcu ES; Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA. Electronic address: esma.yolcu@health.missouri.edu.
  • Shirwan H; Department of Child Health,University of Missouri,Columbia,Missouri,USA; Department of Molecular Microbiology and Immunology,University of Missouri,Columbia,Missouri,USA; NextGen Precision Health,University of Missouri,Columbia,Missouri,USA. Electronic address: haval.shirwan@health.missouri.edu.
Am J Transplant ; 23(5): 619-628, 2023 05.
Article em En | MEDLINE | ID: mdl-36863480
ABSTRACT
The instant blood-mediated inflammatory reaction (IBMIR) is initiated by innate immune responses that cause substantial islet loss after intraportal transplantation. Thrombomodulin (TM) is a multifaceted innate immune modulator. In this study, we report the generation of a chimeric form of thrombomodulin with streptavidin (SA-TM) for transient display on the surface of islets modified with biotin to mitigate IBMIR. SA-TM protein expressed in insect cells showed the expected structural and functional features. SA-TM converted protein C into activated protein C, blocked phagocytosis of xenogeneic cells by mouse macrophages and inhibited neutrophil activation. SA-TM was effectively displayed on the surface of biotinylated islets without a negative effect on their viability or function. Islets engineered with SA-TM showed improved engraftment and established euglycemia in 83% of diabetic recipients when compared with 29% of recipients transplanted with SA-engineered islets as control in a syngeneic minimal mass intraportal transplantation model. Enhanced engraftment and function of SA-TM-engineered islets were associated with the inhibition of intragraft proinflammatory innate cellular and soluble mediators of IBMIR, such as macrophages, neutrophils, high-mobility group box 1, tissue factor, macrophage chemoattractant protein-1, interleukin-1ß, interleukin-6, tumor necrosis factor-α, interferon-γ. Transient display of SA-TM protein on the islet surface to modulate innate immune responses causing islet graft destruction has clinical potential for autologous and allogeneic islet transplantation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transplante das Ilhotas Pancreáticas / Ilhotas Pancreáticas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Am J Transplant Assunto da revista: TRANSPLANTE Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Transplante das Ilhotas Pancreáticas / Ilhotas Pancreáticas Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Am J Transplant Assunto da revista: TRANSPLANTE Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos