Your browser doesn't support javascript.
loading
Role of Artificial Intelligence in PET/CT Imaging for Management of Lymphoma.
Veziroglu, Eren M; Farhadi, Faraz; Hasani, Navid; Nikpanah, Moozhan; Roschewski, Mark; Summers, Ronald M; Saboury, Babak.
Afiliação
  • Veziroglu EM; Geisel School of Medicine at Dartmouth, Hanover, NH.
  • Farhadi F; Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD; Geisel School of Medicine at Dartmouth, Hanover, NH.
  • Hasani N; Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD.
  • Nikpanah M; Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD; Department of Radiology, University of Alabama at Birmingham, AL.
  • Roschewski M; Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD.
  • Summers RM; Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD; Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, MD.
  • Saboury B; Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD. Electronic address: Babak.Saboury@nih.org.
Semin Nucl Med ; 53(3): 426-448, 2023 05.
Article em En | MEDLINE | ID: mdl-36870800
Our review shows that AI-based analysis of lymphoma whole-body FDG-PET/CT can inform all phases of clinical management including staging, prognostication, treatment planning, and treatment response evaluation. We highlight advancements in the role of neural networks for performing automated image segmentation to calculate PET-based imaging biomarkers such as the total metabolic tumor volume (TMTV). AI-based image segmentation methods are at levels where they can be semi-automatically implemented with minimal human inputs and nearing the level of a second-opinion radiologist. Advances in automated segmentation methods are particularly apparent in the discrimination of lymphomatous vs non-lymphomatous FDG-avid regions, which carries through to automated staging. Automated TMTV calculators, in addition to automated calculation of measures such as Dmax are informing robust models of progression-free survival which can then feed into improved treatment planning.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada / Linfoma Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Semin Nucl Med Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada / Linfoma Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Semin Nucl Med Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos