Structural Characterization of Hypoxia Inducible Factor α-Prolyl Hydroxylase Domain 2 Interaction through MD Simulations.
Int J Mol Sci
; 24(5)2023 Mar 01.
Article
em En
| MEDLINE
| ID: mdl-36902141
The Prolyl Hydroxylases (PHDs) are an enzymatic family that regulates cell oxygen-sensing. PHDs hydroxylate hypoxia-inducible transcription factors α (HIFs-α) driving their proteasomal degradation. Hypoxia inhibits PHDs activity, inducing HIFs-α stabilization and cell adaptation to hypoxia. As a hallmark of cancer, hypoxia promotes neo-angiogenesis and cell proliferation. PHD isoforms are thought to have a variable impact on tumor progression. All isoforms hydroxylate HIF-α (HIF-1,2,3α) with different affinities. However, what determines these differences and how they pair with tumor growth is poorly understood. Here, molecular dynamics simulations were used to characterize the PHD2 binding properties in complexes with HIF-1α and HIF-2α. In parallel, conservation analysis and binding free energy calculations were performed to better understand PHD2 substrate affinity. Our data suggest a direct association between the PHD2 C-terminus and HIF-2α that is not observed in the PHD2/HIF-1α complex. Furthermore, our results indicate that phosphorylation of a PHD2 residue, Thr405, causes a variation in binding energy, despite the fact that this PTM has only a limited structural impact on PHD2/HIFs-α complexes. Collectively, our findings suggest that the PHD2 C-terminus may act as a molecular regulator of PHD's activity.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Subunidade alfa do Fator 1 Induzível por Hipóxia
/
Prolil Hidroxilases
Limite:
Humans
Idioma:
En
Revista:
Int J Mol Sci
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Itália
País de publicação:
Suíça