Your browser doesn't support javascript.
loading
Mechanochemical solid state single electron transfer from reduced organic hydrocarbon for catalytic aryl-halide bond activation.
Biswas, Amit; Bhunia, Anup; Mandal, Swadhin K.
Afiliação
  • Biswas A; Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur-741246 India swadhin.mandal@iiserkol.ac.in bhunia1988@gmail.com.
  • Bhunia A; Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur-741246 India swadhin.mandal@iiserkol.ac.in bhunia1988@gmail.com.
  • Mandal SK; Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur-741246 India swadhin.mandal@iiserkol.ac.in bhunia1988@gmail.com.
Chem Sci ; 14(10): 2606-2615, 2023 Mar 08.
Article em En | MEDLINE | ID: mdl-36908958
ABSTRACT
Solid-state radical generation is an attractive but underutilized methodology in the catalytic strong bond activation process, such as the aryl-halide bond. Traditionally, such a process of strong bond activation relied upon the use of transition metal complexes or strongly reducing photocatalysts in organic solvents. The generation of the aryl radical from aryl halides in the absence of transition-metal or external stimuli, such as light or cathodic current, remains an elusive process. In this study, we describe a reduced organic hydrocarbon, which can act as a super reductant in the solid state to activate strong bonds by solid-state single electron transfer (SSSET) under the influence of mechanical energy leading to a catalytic strategy based on the mechano-SSSET or mechanoredox process. Here, we investigate the solid-state synthesis of the super electron donor phenalenyl anion in a ball mill and its application as an active catalyst in strong bond (aryl halide) activation. Aryl radicals generated from aryl halides by employing this strategy are competent for various carbon-carbon bond-forming reactions under solvent-free and transition metal-free conditions. We illustrate this approach for partially soluble or insoluble polyaromatic arenes in accomplishing solid-solid C-C cross-coupling catalysis, which is otherwise difficult to achieve by traditional methods using solvents.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chem Sci Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Chem Sci Ano de publicação: 2023 Tipo de documento: Article
...