Your browser doesn't support javascript.
loading
Regulatory mechanism of MeGI on sexuality in Diospyros oleifera.
Mai, Yini; Sun, Peng; Suo, Yujing; Li, Huawei; Han, Weijuan; Diao, Songfeng; Wang, Liyuan; Yuan, Jiaying; Wang, Yiru; Ye, Lingshuai; Zhang, Yue; Li, Fangdong; Fu, Jianmin.
Afiliação
  • Mai Y; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China.
  • Sun P; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China.
  • Suo Y; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China.
  • Li H; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China.
  • Han W; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China.
  • Diao S; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China.
  • Wang L; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China.
  • Yuan J; Chinese Academy of Sciences (CAS) Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
  • Wang Y; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China.
  • Ye L; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China.
  • Zhang Y; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China.
  • Li F; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China.
  • Fu J; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Non-timber Forest Germplasm Enhancement and Utilization of National Forestry and Grassland Administration, Research Institute of Non-timber Forestry, Chinese Academy of Forestry, Zhengzhou, China.
Front Plant Sci ; 14: 1046235, 2023.
Article em En | MEDLINE | ID: mdl-36909399
ABSTRACT
Dioecy system is an important strategy for maintaining genetic diversity. The transcription factor MeGI, contributes to dioecy by promoting gynoecium development in Diospyros lotus and D. kaki. However, the function of MeGI in D. oleifera has not been identified. In this study, we confirmed that MeGI, cloned from D. oleifera, repressed the androecium development in Arabidopsis thaliana. Subsequently, chromatin immunoprecipitation-sequencing (ChIP-seq), DNA affinity purification-sequencing (DAP-seq), and RNA-seq were used to uncover the gene expression response to MeGI. The results showed that the genes upregulated and downregulated in response to MeGI were mainly enriched in the circadian rhythm-related and flavonoid biosynthetic pathways, respectively. Additionally, the WRKY DNA-binding protein 28 (WRKY28) gene, which was detected by ChIP-seq, DAP-seq, and RNA-seq, was emphasized. WRKY28 has been reported to inhibit salicylic acid (SA) biosynthesis and was upregulated in MeGI-overexpressing A. thaliana flowers, suggesting that MeGI represses the SA level by increasing the expression level of WRKY28. This was confirmed that SA level was lower in D. oleifera female floral buds than male. Overall, our findings indicate that the MeGI mediates its sex control function in D. oleifera mainly by regulating genes in the circadian rhythm, SA biosynthetic, and flavonoid biosynthetic pathways.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Front Plant Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Front Plant Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China