Your browser doesn't support javascript.
loading
Computational models of dopamine release measured by fast scan cyclic voltammetry in vivo.
Shashaank, N; Somayaji, Mahalakshmi; Miotto, Mattia; Mosharov, Eugene V; Makowicz, Emily A; Knowles, David A; Ruocco, Giancarlo; Sulzer, David L.
Afiliação
  • Shashaank N; Department of Computer Science, Columbia University, New York, NY 10027, USA.
  • Somayaji M; New York Genome Center, New York, NY 10013, USA.
  • Miotto M; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.
  • Mosharov EV; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.
  • Makowicz EA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
  • Knowles DA; Department of Physics, Sapienza University, Rome 00185, Italy.
  • Ruocco G; Center for Life Nano & Neuroscience, Italian Institute of Technology, Rome 00161, Italy.
  • Sulzer DL; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA.
PNAS Nexus ; 2(3): pgad044, 2023 Mar.
Article em En | MEDLINE | ID: mdl-36909827
Dopamine neurotransmission in the striatum is central to many normal and disease functions. Ventral midbrain dopamine neurons exhibit ongoing tonic firing that produces low extrasynaptic levels of dopamine below the detection of conventional extrasynaptic cyclic voltammetry (∼10-20 nanomolar), with superimposed bursts that can saturate the dopamine uptake transporter and produce transient micromolar concentrations. The bursts are known to lead to marked presynaptic plasticity via multiple mechanisms, but analysis methods for these kinetic parameters are limited. To provide a deeper understanding of the mechanics of the modulation of dopamine neurotransmission by physiological, genetic, and pharmacological means, we present three computational models of dopamine release with different levels of spatiotemporal complexity to analyze in vivo fast-scan cyclic voltammetry recordings from the dorsal striatum of mice. The models accurately fit to cyclic voltammetry data and provide estimates of presynaptic dopamine facilitation/depression kinetics and dopamine transporter reuptake kinetics, and we used the models to analyze the role of synuclein proteins in neurotransmission. The models' results support recent findings linking the presynaptic protein α-synuclein to the short-term facilitation and long-term depression of dopamine release, as well as reveal a new role for ß-synuclein and/or γ-synuclein in the long-term regulation of dopamine reuptake.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: PNAS Nexus Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: PNAS Nexus Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido