Your browser doesn't support javascript.
loading
Signal Amplification in Electrochemical DNA Biosensors Using Target-Capturing DNA Origami Tiles.
Williamson, Paul; Piskunen, Petteri; Ijäs, Heini; Butterworth, Adrian; Linko, Veikko; Corrigan, Damion K.
Afiliação
  • Williamson P; Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1QE, United Kingdom.
  • Piskunen P; Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
  • Ijäs H; Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
  • Butterworth A; Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany.
  • Linko V; Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1QE, United Kingdom.
  • Corrigan DK; Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
ACS Sens ; 8(4): 1471-1480, 2023 04 28.
Article em En | MEDLINE | ID: mdl-36914224
Electrochemical DNA (e-DNA) biosensors are feasible tools for disease monitoring, with their ability to translate hybridization events between a desired nucleic acid target and a functionalized transducer, into recordable electrical signals. Such an approach provides a powerful method of sample analysis, with a strong potential to generate a rapid time to result in response to low analyte concentrations. Here, we report a strategy for the amplification of electrochemical signals associated with DNA hybridization, by harnessing the programmability of the DNA origami method to construct a sandwich assay to boost charge transfer resistance (RCT) associated with target detection. This allowed for an improvement in the sensor limit of detection by two orders of magnitude compared to a conventional label-free e-DNA biosensor design and linearity for target concentrations between 10 pM and 1 nM without the requirement for probe labeling or enzymatic support. Additionally, this sensor design proved capable of achieving a high degree of strand selectivity in a challenging DNA-rich environment. This approach serves as a practical method for addressing strict sensitivity requirements necessary for a low-cost point-of-care device.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Técnicas Eletroquímicas Idioma: En Revista: ACS Sens Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Reino Unido País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Técnicas Eletroquímicas Idioma: En Revista: ACS Sens Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Reino Unido País de publicação: Estados Unidos