Predicting non-equilibrium folding behavior of polymer chains using the steepest-entropy-ascent quantum thermodynamic framework.
J Chem Phys
; 158(10): 104904, 2023 Mar 14.
Article
em En
| MEDLINE
| ID: mdl-36922120
The steepest-entropy-ascent quantum thermodynamic (SEAQT) framework is used to explore the influence of heating and cooling on polymer chain folding kinetics. The framework predicts how a chain moves from an initial non-equilibrium state to stable equilibrium along a unique thermodynamic path. The thermodynamic state is expressed by occupation probabilities corresponding to the levels of a discrete energy landscape. The landscape is generated using the Replica Exchange Wang-Landau method applied to a polymer chain represented by a sequence of hydrophobic and polar monomers with a simple hydrophobic-polar amino acid model. The chain conformation evolves as energy shifts among the levels of the energy landscape according to the principle of steepest entropy ascent. This principle is implemented via the SEAQT equation of motion. The SEAQT framework has the benefit of providing insight into structural properties under non-equilibrium conditions. Chain conformations during heating and cooling change continuously without sharp transitions in morphology. The changes are more drastic along non-equilibrium paths than along quasi-equilibrium paths. The SEAQT-predicted kinetics are fitted to rates associated with the experimental intensity profiles of cytochrome c protein folding with Rouse dynamics.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
J Chem Phys
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Estados Unidos
País de publicação:
Estados Unidos