The Back Muscle Surface Electromyography-Based Fatigue Index: A Digital Biomarker of Human Neuromuscular Aging?
Bioengineering (Basel)
; 10(3)2023 Feb 27.
Article
em En
| MEDLINE
| ID: mdl-36978691
As part of our quest for digital biomarkers of neuromuscular aging, and encouraged by recent findings in healthy volunteers, this study investigated if the instantaneous median frequency (IMDF) derived from back muscle surface electromyographic (SEMG) data monitored during cyclic back extensions could reliably differentiate between younger and older individuals with cLBP. A total of 243 persons with cLBP participated in three experimental sessions: at baseline, one to two days after the first session, and then again approximately six weeks later. During each session, the study participants performed a series of three isometric maximal voluntary contractions (MVC) of back extensors using a dynamometer. These were followed by an isometric back extension at 80% MVC, and-after a break-25 slow cyclic back extensions at 50% MVC. SEMG data were recorded bilaterally at L5 (multifidus), L2 (longissimus dorsi), and L1 (iliocostalis lumborum). Linear mixed-effects models found the IMDF-SEMG time-course changes more rapidly in younger than in older individuals, and more prominently in male participants. The absolute and relative reliabilities of the SEMG time-frequency representations were well compared between older and younger participants. The results indicated an overall good relative reliability, but variable absolute reliability levels. IMDF-SEMG estimates derived from cyclic back extensions proved to be successful in reliably detecting differences in back muscle function in younger vs. older persons with cLBP. These findings encourage further research, with a focus on assessing whether an IMDF-SEMG-based index could be utilized as a tool to achieve the preclinical detection of back muscle aging, and possibly predict the development of back muscle sarcopenia.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Bioengineering (Basel)
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Áustria
País de publicação:
Suíça