Your browser doesn't support javascript.
loading
Bone Marrow Mesenchymal Stem-Cell-Derived Exosomes Ameliorate Deoxynivalenol-Induced Mice Liver Damage.
Meng, Zitong; Liao, Yuxiao; Peng, Zhao; Zhou, Xiaolei; Zhou, Huanhuan; Nüssler, Andreas K; Liu, Liegang; Yang, Wei.
Afiliação
  • Meng Z; Hubei Key Laboratory of Food Nutrition and Safety, Department of Nutrition and Food Hygiene, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.
  • Liao Y; MOE Key Lab of Environment and Health, Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.
  • Peng Z; Hubei Key Laboratory of Food Nutrition and Safety, Department of Nutrition and Food Hygiene, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.
  • Zhou X; MOE Key Lab of Environment and Health, Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.
  • Zhou H; Hubei Key Laboratory of Food Nutrition and Safety, Department of Nutrition and Food Hygiene, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.
  • Nüssler AK; MOE Key Lab of Environment and Health, Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.
  • Liu L; Hubei Key Laboratory of Food Nutrition and Safety, Department of Nutrition and Food Hygiene, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.
  • Yang W; MOE Key Lab of Environment and Health, Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.
Antioxidants (Basel) ; 12(3)2023 Feb 27.
Article em En | MEDLINE | ID: mdl-36978835
ABSTRACT
Deoxynivalenol (DON) is a kind of Fusarium toxin that can cause a variety of toxic effects. DON is mainly metabolized and detoxified by the liver. When the concentration of DON exceeds the metabolic capacity of the liver, it will trigger acute or chronic damage to the liver tissue. Previous studies demonstrated that bone marrow mesenchymal stem-cell-secreted exosomes (BMSC-exos) reduce liver injury. Therefore, we issue a hypothesis that in vitro-cultured rat BMSC-secreted exos could ameliorate liver damage after 2 mg/kg bw/day of DON exposure. In total, 144 lipids were identified in BMEC-exos, including high polyunsaturated fatty acid (PUFA) levels. BMSC-exos treatment alleviated liver pathological changes and decreased levels of alanine aminotransferase, aspartate aminotransferase, inflammatory factors interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and lipid peroxidation. Otherwise, low or high BMSC-exos treatment obviously changes DON-induced hepatic oxylipin patterns. According to the results from our correlation network analysis, Pearson correlation coefficient analysis, and hierarchical clustering analysis, the top 10% oxidized lipids can be classified into two categories one that was positively correlated with copper-zinc superoxide dismutase (Cu/Zn SOD) and another that was positively correlated with liver injury indicators. Altogether, BMSC-exos administration maintained normal liver function and reduced oxidative damage in liver tissue. Moreover, it could also significantly change the oxylipin profiles under DON conditions.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Antioxidants (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Antioxidants (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China