Rams, hounds and white boxes: Investigating human-AI collaboration protocols in medical diagnosis.
Artif Intell Med
; 138: 102506, 2023 04.
Article
em En
| MEDLINE
| ID: mdl-36990586
In this paper, we study human-AI collaboration protocols, a design-oriented construct aimed at establishing and evaluating how humans and AI can collaborate in cognitive tasks. We applied this construct in two user studies involving 12 specialist radiologists (the knee MRI study) and 44 ECG readers of varying expertise (the ECG study), who evaluated 240 and 20 cases, respectively, in different collaboration configurations. We confirm the utility of AI support but find that XAI can be associated with a "white-box paradox", producing a null or detrimental effect. We also find that the order of presentation matters: AI-first protocols are associated with higher diagnostic accuracy than human-first protocols, and with higher accuracy than both humans and AI alone. Our findings identify the best conditions for AI to augment human diagnostic skills, rather than trigger dysfunctional responses and cognitive biases that can undermine decision effectiveness.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Inteligência Artificial
Tipo de estudo:
Diagnostic_studies
/
Guideline
/
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
Artif Intell Med
Assunto da revista:
INFORMATICA MEDICA
Ano de publicação:
2023
Tipo de documento:
Article
País de publicação:
Holanda