Your browser doesn't support javascript.
loading
Rams, hounds and white boxes: Investigating human-AI collaboration protocols in medical diagnosis.
Cabitza, Federico; Campagner, Andrea; Ronzio, Luca; Cameli, Matteo; Mandoli, Giulia Elena; Pastore, Maria Concetta; Sconfienza, Luca Maria; Folgado, Duarte; Barandas, Marília; Gamboa, Hugo.
Afiliação
  • Cabitza F; Department of Computer Science, Systems and Communication, University of Milano-Bicocca, Milan, Italy; IRCCS Istituto Ortopedico Galeazzi, Milan, Italy. Electronic address: federico.cabitza@unimib.it.
  • Campagner A; IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
  • Ronzio L; IRCCS Istituto San Raffaele, Milan, Italy.
  • Cameli M; Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy.
  • Mandoli GE; Department of Medical Biotechnologies, Division of Cardiology, University of Siena, Siena, Italy.
  • Pastore MC; Azienda Ospedaliera Maggiore Della Carita' Di Novara, Novara, Italy.
  • Sconfienza LM; IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.
  • Folgado D; Associação Fraunhofer Portugal Research, Lisbon, Portugal.
  • Barandas M; Associação Fraunhofer Portugal Research, Lisbon, Portugal.
  • Gamboa H; Associação Fraunhofer Portugal Research, Lisbon, Portugal; Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, Lisbon, Portugal.
Artif Intell Med ; 138: 102506, 2023 04.
Article em En | MEDLINE | ID: mdl-36990586
In this paper, we study human-AI collaboration protocols, a design-oriented construct aimed at establishing and evaluating how humans and AI can collaborate in cognitive tasks. We applied this construct in two user studies involving 12 specialist radiologists (the knee MRI study) and 44 ECG readers of varying expertise (the ECG study), who evaluated 240 and 20 cases, respectively, in different collaboration configurations. We confirm the utility of AI support but find that XAI can be associated with a "white-box paradox", producing a null or detrimental effect. We also find that the order of presentation matters: AI-first protocols are associated with higher diagnostic accuracy than human-first protocols, and with higher accuracy than both humans and AI alone. Our findings identify the best conditions for AI to augment human diagnostic skills, rather than trigger dysfunctional responses and cognitive biases that can undermine decision effectiveness.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial Tipo de estudo: Diagnostic_studies / Guideline / Prognostic_studies Limite: Humans Idioma: En Revista: Artif Intell Med Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Inteligência Artificial Tipo de estudo: Diagnostic_studies / Guideline / Prognostic_studies Limite: Humans Idioma: En Revista: Artif Intell Med Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de publicação: Holanda