Your browser doesn't support javascript.
loading
Nature-based solutions for wastewater treatment and bioenergy recovery: A comparative Life Cycle Assessment.
Vassalle, Lucas; Ferrer, Ivet; Passos, Fabiana; Filho, Cesar Rossas Mota; Garfí, Marianna.
Afiliação
  • Vassalle L; GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona, 1-3, Building D1, E-08034 Barcelona, Spain; Department of Sanitary and Environmental Engineering, Universidade Federal de
  • Ferrer I; GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona, 1-3, Building D1, E-08034 Barcelona, Spain.
  • Passos F; GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona, 1-3, Building D1, E-08034 Barcelona, Spain; Department of Sanitary and Environmental Engineering, Universidade Federal de
  • Filho CRM; Department of Sanitary and Environmental Engineering, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627 Belo Horizonte, MG, Brazil.
  • Garfí M; GEMMA-Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/Jordi Girona, 1-3, Building D1, E-08034 Barcelona, Spain. Electronic address: marianna.garfi@upc.edu.
Sci Total Environ ; 880: 163291, 2023 Jul 01.
Article em En | MEDLINE | ID: mdl-37023825
ABSTRACT
The aim of this study was to assess the environmental impacts of up-flow anaerobic sludge blanket (UASB) reactors coupled with high rate algal ponds (HRAPs) for wastewater treatment and bioenergy recovery using the Life Cycle Assessment (LCA) methodology. This solution was compared with the UASB reactor coupled with other consolidated technologies in rural areas of Brazil, such as trickling filters, polishing ponds and constructed wetlands. To this end, full-scale systems were designed based on experimental data obtained from pilot/demonstrative scale systems. The functional unit was 1 m3 of water. System boundaries comprised input and output flows of material and energy resources for system construction and operation. The LCA was performed with the software SimaPro®, using the ReCiPe midpoint method. The results showed that the HRAPs scenario was the most environmentally friendly alternative in 4 out of 8 impact categories (i.e. Global warming, Stratospheric Ozone Depletion, Terrestrial Ecotoxicity and Fossil resource scarcity). This was associated with the increase in biogas production by the co-digestion of microalgae and raw wastewater, leading to higher electricity and heat recovery. From an economic point of view, despite the HRAPs showed a higher capital cost, the operation and maintenance costs were completely offset by the revenue obtained from the electricity generated. Overall, the UASB reactor coupled with HRAPS showed to be a feasible nature-based solution to be used in small communities in Brazil, especially when microalgae biomass is valorised and used to increase biogas productivity.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Purificação da Água / Microalgas Limite: Animals Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Purificação da Água / Microalgas Limite: Animals Idioma: En Revista: Sci Total Environ Ano de publicação: 2023 Tipo de documento: Article