Your browser doesn't support javascript.
loading
NLRP10 promotes AGEs-induced NLRP1 and NLRP3 inflammasome activation via ROS/MAPK/NF-κB signaling in human periodontal ligament cells.
Yi, Xiaowei; Song, Yao; Xu, Jialei; Wang, Liu; Liu, Liu; Huang, Dingming; Zhang, Lan.
Afiliação
  • Yi X; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14# Third Section, Renmin Nan Road, Chengdu, 610041, China.
  • Song Y; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14# Third Section, Renmin Nan Road, Chengdu, 610041, China.
  • Xu J; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14# Third Section, Renmin Nan Road, Chengdu, 610041, China.
  • Wang L; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14# Third Section, Renmin Nan Road, Chengdu, 610041, China.
  • Liu L; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14# Third Section, Renmin Nan Road, Chengdu, 610041, China.
  • Huang D; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14# Third Section, Renmin Nan Road, Chengdu, 610041, China.
  • Zhang L; State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14# Third Section, Renmin Nan Road, Chengdu, 610041, China. zlnancy914@sina.com.
Odontology ; 112(1): 100-111, 2024 Jan.
Article em En | MEDLINE | ID: mdl-37043073
Diabetes mellitus (DM), characterized by production and accumulation of advanced glycation end products (AGEs), induces and promotes chronic inflammation in tissues, including periodontal tissue. Increasing amount of epidemiological and experimental evidence demonstrated that more extensive inflammatory reaction and bone resorption occurred in periodontal tissues in diabetic patients with periodontitis, which is speculated to be related to NLRP3 inflammasome. NLRP10 is the only NOD-like receptor protein lacking leucine-rich repeats, suggesting that NLRP10 may be a regulatory protein. The aim of this study was to investigate the regulatory role of NLRP10 on NLRP1 and NLRP3 inflammasome in human periodontal ligament cells (HPDLCs) under AGEs treatment. Expression of NLRP10 in HPDLCs stimulated with 100 ug/mL AGEs for 24 h was observed. Detection of TRIM31 is conducted, and in TRIM31-overexpressed HPDLCs, the interaction between NLRP10 with TRIM31 as well as NLRP10 with ubiquitination were explored by immunoprecipitation. Under AGEs stimulation, the activation of reactive oxidative stress (ROS) and inflammatory signaling pathway (NF-κB, MAPK pathway) was detected by biomedical microscope and western blot (WB), respectively. After stimulation with AGEs for 24 h with or without silencing NLRP10, inflammatory cytokines (IL-6 and IL-1ß), NF-κB, MAPK pathway, ROS, and components of inflammasome were assessed. In HPDLCs, we found AGEs induced NLRP10 and inhibited TRIM31. TRIM31 overexpression significantly enhanced interaction between TRIM31 and NLRP10, then induced proteasomal degradation of NLRP10. Moreover, under AGEs stimulation, NLRP10 positively regulates NLRP1, NLRP3 inflammasomes by activating NF-κB, MAPK pathway, and increasing ROS, finally promoting the expression of inflammatory cytokines. Together, we, for the first time, confirmed that NLRP10 could promote inflammatory response induced by AGEs in HPDLCs via activation of NF-κB, and MAPK pathway and increasing ROS.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: NF-kappa B / Inflamassomos Limite: Humans Idioma: En Revista: Odontology Assunto da revista: ODONTOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: NF-kappa B / Inflamassomos Limite: Humans Idioma: En Revista: Odontology Assunto da revista: ODONTOLOGIA Ano de publicação: 2024 Tipo de documento: Article País de afiliação: China País de publicação: Japão