Your browser doesn't support javascript.
loading
Multiple Forms of Neural Cell Death in the Cyclical Brain Degeneration of A Colonial Chordate.
Anselmi, Chiara; Caicci, Federico; Bocci, Tommaso; Guidetti, Matteo; Priori, Alberto; Giusti, Veronica; Levy, Tom; Raveh, Tal; Voskoboynik, Ayelet; Weissman, Irving L; Manni, Lucia.
Afiliação
  • Anselmi C; Hopkins Marine Station, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Pacific Grove, CA 93950, USA.
  • Caicci F; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
  • Bocci T; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
  • Guidetti M; Dipartimento di Biologia, Università degli Studi di Padova, 35131 Padova, Italy.
  • Priori A; "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy.
  • Giusti V; "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy.
  • Levy T; Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133 Milan, Italy.
  • Raveh T; "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy.
  • Voskoboynik A; San Camillo Hospital srl, IRCCS, 30126 Venezia, Italy.
  • Weissman IL; Hopkins Marine Station, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Pacific Grove, CA 93950, USA.
  • Manni L; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
Cells ; 12(7)2023 03 29.
Article em En | MEDLINE | ID: mdl-37048113
ABSTRACT
Human neuronal loss occurs through different cellular mechanisms, mainly studied in vitro. Here, we characterized neuronal death in B. schlosseri, a marine colonial tunicate that shares substantial genomic homology with mammals and has a life history in which controlled neurodegeneration happens simultaneously in the brains of adult zooids during a cyclical phase named takeover. Using an ultrastructural and transcriptomic approach, we described neuronal death forms in adult zooids before and during the takeover phase while comparing adult zooids in takeover with their buds where brains are refining their structure. At takeover, we found in neurons clear morphologic signs of apoptosis (i.e., chromatin condensation, lobed nuclei), necrosis (swollen cytoplasm) and autophagy (autophagosomes, autolysosomes and degradative multilamellar bodies). These results were confirmed by transcriptomic analyses that highlighted the specific genes involved in these cell death pathways. Moreover, the presence of tubulovesicular structures in the brain medulla alongside the over-expression of prion disease genes in late cycle suggested a cell-to-cell, prion-like propagation recalling the conformational disorders typical of some human neurodegenerative diseases. We suggest that improved understanding of how neuronal alterations are regulated in the repeated degeneration-regeneration program of B. schlosseri may yield mechanistic insights relevant to the study of human neurodegenerative diseases.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Urocordados / Doenças Neurodegenerativas / Cordados Limite: Animals / Humans Idioma: En Revista: Cells Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Urocordados / Doenças Neurodegenerativas / Cordados Limite: Animals / Humans Idioma: En Revista: Cells Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos
...