Your browser doesn't support javascript.
loading
Correlated signatures of social behavior in cerebellum and anterior cingulate cortex.
Hur, Sung Won; Safaryan, Karen; Yang, Long; Blair, Hugh T; Masmanidis, Sotiris C; Mathews, Paul J; Aharoni, Daniel; Golshani, Peyman.
Afiliação
  • Hur SW; Department of Neurology, DGSOM, University of California Los Angeles, Los Angeles, California, USA.
  • Safaryan K; The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, USA.
  • Yang L; Department of Neurology, DGSOM, University of California Los Angeles, Los Angeles, California, USA.
  • Blair HT; Department of Neurobiology, University of California Los Angeles, Los Angeles, California, USA.
  • Masmanidis SC; Department of Psychology, University of California Los Angeles, Los Angeles, California, USA.
  • Mathews PJ; Department of Neurobiology, University of California Los Angeles, Los Angeles, California, USA.
  • Aharoni D; The Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, USA.
  • Golshani P; Department of Neurology, Harbor-UCLA Medical Center, Torrance, California, USA.
bioRxiv ; 2023 Oct 14.
Article em En | MEDLINE | ID: mdl-37066345
ABSTRACT
The cerebellum has been implicated in the regulation of social behavior. Its influence is thought to arise from communication, via the thalamus, to forebrain regions integral in the expression of social interactions, including the anterior cingulate cortex (ACC). However, the signals encoded or the nature of the communication between the cerebellum and these brain regions is poorly understood. Here, we describe an approach that overcomes technical challenges in exploring the coordination of distant brain regions at high temporal and spatial resolution during social behavior. We developed the E-Scope, an electrophysiology-integrated miniature microscope, to synchronously measure extracellular electrical activity in the cerebellum along with calcium imaging of the ACC. This single coaxial cable device combined these data streams to provide a powerful tool to monitor the activity of distant brain regions in freely behaving animals. During social behavior, we recorded the spike timing of multiple single units in cerebellar right Crus I (RCrus I) Purkinje cells (PCs) or dentate nucleus (DN) neurons while synchronously imaging calcium transients in contralateral ACC neurons. We found that during social interactions a significant subpopulation of cerebellar PCs were robustly inhibited, while most modulated neurons in the DN were activated, and their activity was correlated with positively modulated ACC neurons. These distinctions largely disappeared when only non-social epochs were analyzed suggesting that cerebellar-cortical interactions were behaviorally specific. Our work provides new insights into the complexity of cerebellar activation and co-modulation of the ACC during social behavior and a valuable open-source tool for simultaneous, multimodal recordings in freely behaving mice.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: BioRxiv Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos
...