Your browser doesn't support javascript.
loading
FPGA-Based In-Vivo Calcium Image Decoding for Closed-Loop Feedback Applications.
IEEE Trans Biomed Circuits Syst ; 17(2): 169-179, 2023 04.
Article em En | MEDLINE | ID: mdl-37071510
Miniaturized calcium imaging is an emerging neural recording technique that has been widely used for monitoring neural activity on a large scale at a specific brain region of rats or mice. Most existing calcium-image analysis pipelines operate offline. This results in long processing latency, making it difficult to realize closed-loop feedback stimulation for brain research. In recent work, we have proposed an FPGA-based real-time calcium image processing pipeline for closed-loop feedback applications. It can perform real-time calcium image motion correction, enhancement, fast trace extraction, and real-time decoding from extracted traces. Here, we extend this work by proposing a variety of neural network based methods for real-time decoding and evaluate the tradeoff among these decoding methods and accelerator designs. We introduce the implementation of the neural network based decoders on the FPGA, and show their speedup against the implementation on the ARM processor. Our FPGA implementation enables the real-time calcium image decoding with sub-ms processing latency for closed-loop feedback applications.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cálcio / Redes Neurais de Computação Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: IEEE Trans Biomed Circuits Syst Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cálcio / Redes Neurais de Computação Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: IEEE Trans Biomed Circuits Syst Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos