Metagenomic Methods for Addressing NASA's Planetary Protection Policy Requirements on Future Missions: A Workshop Report.
Astrobiology
; 23(8): 897-907, 2023 08.
Article
em En
| MEDLINE
| ID: mdl-37102710
Molecular biology methods and technologies have advanced substantially over the past decade. These new molecular methods should be incorporated among the standard tools of planetary protection (PP) and could be validated for incorporation by 2026. To address the feasibility of applying modern molecular techniques to such an application, NASA conducted a technology workshop with private industry partners, academics, and government agency stakeholders, along with NASA staff and contractors. The technical discussions and presentations of the Multi-Mission Metagenomics Technology Development Workshop focused on modernizing and supplementing the current PP assays. The goals of the workshop were to assess the state of metagenomics and other advanced molecular techniques in the context of providing a validated framework to supplement the bacterial endospore-based NASA Standard Assay and to identify knowledge and technology gaps. In particular, workshop participants were tasked with discussing metagenomics as a stand-alone technology to provide rapid and comprehensive analysis of total nucleic acids and viable microorganisms on spacecraft surfaces, thereby allowing for the development of tailored and cost-effective microbial reduction plans for each hardware item on a spacecraft. Workshop participants recommended metagenomics approaches as the only data source that can adequately feed into quantitative microbial risk assessment models for evaluating the risk of forward (exploring extraterrestrial planet) and back (Earth harmful biological) contamination. Participants were unanimous that a metagenomics workflow, in tandem with rapid targeted quantitative (digital) PCR, represents a revolutionary advance over existing methods for the assessment of microbial bioburden on spacecraft surfaces. The workshop highlighted low biomass sampling, reagent contamination, and inconsistent bioinformatics data analysis as key areas for technology development. Finally, it was concluded that implementing metagenomics as an additional workflow for addressing concerns of NASA's robotic mission will represent a dramatic improvement in technology advancement for PP and will benefit future missions where mission success is affected by backward and forward contamination.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Voo Espacial
/
Planetas
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
País/Região como assunto:
America do norte
Idioma:
En
Revista:
Astrobiology
Assunto da revista:
BIOLOGIA
Ano de publicação:
2023
Tipo de documento:
Article
País de afiliação:
Estados Unidos
País de publicação:
Estados Unidos