Your browser doesn't support javascript.
loading
A Comparative Study on Heavy Metal Removal from CCA-Treated Wood Waste by Yarrowia lipolytica: Effects of Metal Stress.
Xing, Dan; Magdouli, Sara; Zhang, Jingfa; Bouafif, Hassine; Koubaa, Ahmed.
Afiliação
  • Xing D; Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC J9X 5E4, Canada.
  • Magdouli S; Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.
  • Zhang J; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
  • Bouafif H; Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, 433 Boulevard du Collège, Rouyn-Noranda, QC J9X 0E1, Canada.
  • Koubaa A; Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, QC J9X 5E4, Canada.
J Fungi (Basel) ; 9(4)2023 Apr 13.
Article em En | MEDLINE | ID: mdl-37108923
ABSTRACT
Bioremediation is an effective way to remove heavy metals from pollutants. This study investigated the effects of Yarrowia lipolytica (Y. lipolytica) on the bioremediation of chromated copper arsenate (CCA)-treated wood wastes. Copper ions stressed the yeast strains to improve their bioremediation efficiency. A comparison of changes in morphology, chemical composition, and metal content of CCA wood before and after bioremediation was conducted. The amount of arsenic (As), chromium (Cr), and copper (Cu) was quantified by microwave plasma atomic emission spectrometer. The results showed that yeast strains remained on the surface of CCA-treated wood after bioremediation. The morphologies of the strains changed from net to spherical because of the Cu2+ stress. Fourier-transform infrared spectroscopy showed that carboxylic acid groups of wood were released after removing heavy metals. A large amount of oxalic acid was observed when the optical density (OD600nm) was 0.05 on the 21st day. Meanwhile, the highest removal rate of Cu, As, and Cr was 82.8%, 68.3%, and 43.1%, respectively. Furthermore, the Cu removal from CCA-treated wood increased by about 20% after Cu2+ stress. This study showed that it is feasible to remove heavy metals from CCA-treated wood by Y. lipolytica without destroying the wood structure, especially by copper-induced Y. lipolytica.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Fungi (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Canadá País de publicação: CH / SUIZA / SUÍÇA / SWITZERLAND

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Fungi (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Canadá País de publicação: CH / SUIZA / SUÍÇA / SWITZERLAND