Your browser doesn't support javascript.
loading
Anomalous Colloidal Motion under Strong Confinement.
Abelenda-Núñez, Irene; Ortega, Francisco; Rubio, Ramón G; Guzmán, Eduardo.
Afiliação
  • Abelenda-Núñez I; Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n., Madrid, 28040, Spain.
  • Ortega F; Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n., Madrid, 28040, Spain.
  • Rubio RG; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1., Madrid, 28040, Spain.
  • Guzmán E; Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n., Madrid, 28040, Spain.
Small ; 19(36): e2302115, 2023 Sep.
Article em En | MEDLINE | ID: mdl-37116105
Diffusion of biological macromolecules in the cytoplasm is a paradigm of colloidal diffusion in an environment characterized by a strong restriction of the accessible volume. This makes of the understanding of the physical rules governing colloidal diffusion under conditions mimicking the reduction in accessible volume occurring in the cell cytoplasm, a problem of a paramount importance. This work aims to study how the thermal motion of spherical colloidal beads in the inner cavity of giant unilamellar vesicles (GUVs) is modified by strong confinement conditions, and the viscoelastic character of the medium. Using single particle tracking, it is found that both the confinement and the environmental viscoelasticity lead to the emergence of anomalous motion pathways for colloidal microbeads encapsulated in the aqueous inner cavity of GUVs. This anomalous diffusion is strongly dependent on the ratio between the volume of the colloidal particle and that of the GUV under consideration as well as on the viscosity of the particle's liquid environment. Therefore, the results evidence that the reduction of the free volume accessible to colloidal motion pushes the diffusion far from a standard Brownian pathway as a result of the change in the hydrodynamic boundary conditions driving the particle motion.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Espanha País de publicação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Espanha País de publicação: Alemanha