Your browser doesn't support javascript.
loading
A calorimetric and structural analysis of cooperativity in the thermal unfolding of the PDZ tandem of human Syntenin-1.
Martinez, Jose C; Ruiz-Sanz, Javier; Resina, María J; Montero, Fernando; Camara-Artigas, Ana; Luque, Irene.
Afiliação
  • Martinez JC; Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain. Electronic address: jcmh@ugr.es.
  • Ruiz-Sanz J; Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain. Electronic address: jruizs@ugr.es.
  • Resina MJ; Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain. Electronic address: mjresina@ugr.es.
  • Montero F; Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain. Electronic address: fmontero@ugr.es.
  • Camara-Artigas A; Department of Chemistry and Physics, Agrifood Campus of International Excellence (ceiA3) and CIAMBITAL, University of Almería, Carretera de Sacramento s/n, 04120 Almería, Spain. Electronic address: acamara@ual.es.
  • Luque I; Department of Physical Chemistry, Institute of Biotechnology and Excellence Unit in Chemistry Applied to Biomedicine and Environment, Faculty of Sciences, University of Granada, Avda. Fuentenueva, s/n, 18071 Granada, Spain. Electronic address: iluque@ugr.es.
Int J Biol Macromol ; 242(Pt 1): 124662, 2023 Jul 01.
Article em En | MEDLINE | ID: mdl-37119899
ABSTRACT
Syntenin-1 is a multidomain protein containing a central tandem of two PDZ domains flanked by two unnamed domains. Previous structural and biophysical studies show that the two PDZ domains are functional both isolated and in tandem, occurring a gain in their respective binding affinities when joined through its natural short linker. To get insight into the molecular and energetic reasons of such a gain, here, the first thermodynamic characterization of the conformational equilibrium of Syntenin-1 is presented, with special focus on its PDZ domains. These studies include the thermal unfolding of the whole protein, the PDZ-tandem construct and the two isolated PDZ domains using circular dichroism, differential scanning fluorimetry and differential scanning calorimetry. The isolated PDZ domains show low stability (ΔG < 10 kJ·mol-1) and poor cooperativity compared to the PDZ-tandem, which shows higher stability (20-30 kJ·mol-1) and a fully cooperative behaviour, with energetics similar to that previously described for archetypical PDZ domains. The high-resolution structures suggest that this remarkable increase in cooperativity is associated to strong, water-mediated, interactions at the interface between the PDZ domains, associated to nine conserved hydration regions. The low Tm value (45 °C), the anomalously high unfolding enthalpy (>400 kJ·mol-1), and native heat capacity values (above 40 kJ·K-1·mol-1), indicate that these interfacial buried waters play a relevant role in Syntenin-1 folding energetics.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dobramento de Proteína / Sinteninas Limite: Humans Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dobramento de Proteína / Sinteninas Limite: Humans Idioma: En Revista: Int J Biol Macromol Ano de publicação: 2023 Tipo de documento: Article