Your browser doesn't support javascript.
loading
Stem-cell based soft tissue substitutes: Engineering of crosslinked polylysine-hyaluronic acid microspheres ladened with gingival mesenchymal stem cells for collagen tissue regeneration and angiogenesis.
Ni, Jing; Li, Mengdi; Li, Chaolun; Zhong, Zhe; Xi, Hongwei; Wu, Yiqun.
Afiliação
  • Ni J; Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shang
  • Li M; Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shang
  • Li C; Department of Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology,
  • Zhong Z; Center for Dental Research, Loma Linda University School of Dentistry, Loma Linda, California, USA.
  • Xi H; Shanghai Qisheng Biological Preparation Co., Ltd., Shanghai, China.
  • Wu Y; Department of Second Dental Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology,
J Periodontol ; 94(12): 1436-1449, 2023 Dec.
Article em En | MEDLINE | ID: mdl-37133980
ABSTRACT

BACKGROUND:

The aim of this study was to construct crosslinked polylysine-hyaluronic acid microspheres (pl-HAM) ladened with gingival mesenchymal stem cells (GMSCs) and explore its biologic behavior in soft tissue regeneration.

METHODS:

The effects of the crosslinked pl-HAM on the biocompatibility and the recruitment of L-929 cells and GMSCs were detected in vitro. Moreover, the regeneration of subcutaneous collagen tissue, angiogenesis and the endogenous stem cells recruitment were investigated in vivo. We also detected the cell developing capability of pl-HAMs.

RESULTS:

The crosslinked pl-HAMs appeared to be completely spherical-shaped particles and had good biocompatibility. L-929 cells and GMSCs grew around the pl-HAMs and increased gradually. Cell migration experiments showed that pl-HAMs combined with GMSCs could promote the migration of vascular endothelial cells significantly. Meanwhile, the green fluorescent protein-GMSCs in the pl-HAM group still remain in the soft tissue regeneration area 2 weeks after surgery. The results of in vivo studies showed that denser collagen deposition and more angiogenesis-related indicator CD31 expression in the pl-HAMs+ GMSCs + GeL group compared with the pl-HAMs + GeL group. Immunofluorescence showed that CD44, CD90, CD73 co-staining positive cells surrounded the microspheres in both pl-HAMs + GeL group and pl-HAM + GMSCs + GeL group.

CONCLUSIONS:

The crosslinked pl-HAM ladened with GMSCs system could provide a suitable microenvironment for collagen tissue regeneration, angiogenesis and endogenous stem cells recruitment, which may be an alternative to autogenous soft tissue grafts for minimally invasive treatments for periodontal soft tissue defects in the future.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polilisina / Células-Tronco Mesenquimais Idioma: En Revista: J Periodontol Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polilisina / Células-Tronco Mesenquimais Idioma: En Revista: J Periodontol Ano de publicação: 2023 Tipo de documento: Article