Doping molybdenum oxides with different non-metal atoms to promote bioelectrocatalysis in microbial fuel cells.
J Colloid Interface Sci
; 645: 371-379, 2023 Sep.
Article
em En
| MEDLINE
| ID: mdl-37156145
The sluggish extracellular electron transfer has been known as one of the bottlenecks to limit the power density of microbial fuel cells (MFCs). Herein, molybdenum oxides (MoOx) are doped with various types of non-metal atoms (N, P, and S) by electrostatic adsorption, followed by high-temperature carbonization. The as-prepared material is further used as MFC anode. Results indicate that all different elements-doped anodes can accelerate the electron transfer rate, and the great enhancement mechanism is attributed to synergistic effect of dopped non-metal atoms and the unique MoOx nanostructure, which offers high proximity and a large reaction surface area to promote microbe colonization. This not only enables efficient direct electron transfer but also enriches the flavin-like mediators for fast extracellular electron transfer. This work renders new insights into doping non-metal atoms onto metal oxides toward the enhancement of electrode kinetics at the anode of MFC.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Fontes de Energia Bioelétrica
Idioma:
En
Revista:
J Colloid Interface Sci
Ano de publicação:
2023
Tipo de documento:
Article
País de publicação:
Estados Unidos