Your browser doesn't support javascript.
loading
Combining Heart Rate Variability and Oximetry to Improve Apneic Event Screening in Non-Desaturating Patients.
Martín-González, Sofía; Ravelo-García, Antonio G; Navarro-Mesa, Juan L; Hernández-Pérez, Eduardo.
Afiliação
  • Martín-González S; Institute for Technological Development and Innovation in Communications, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain.
  • Ravelo-García AG; Institute for Technological Development and Innovation in Communications, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain.
  • Navarro-Mesa JL; Interactive Technologies Institute (ITI/LARSyS and ARDITI), 9020-105 Funchal, Portugal.
  • Hernández-Pérez E; Institute for Technological Development and Innovation in Communications, Universidad de Las Palmas de Gran Canaria, 35017 Las Palmas de Gran Canaria, Spain.
Sensors (Basel) ; 23(9)2023 Apr 25.
Article em En | MEDLINE | ID: mdl-37177472
In this paper, we thoroughly analyze the detection of sleep apnea events in the context of Obstructive Sleep Apnea (OSA), which is considered a public health problem because of its high prevalence and serious health implications. We especially evaluate patients who do not always show desaturations during apneic episodes (non-desaturating patients). For this purpose, we use a database (HuGCDN2014-OXI) that includes desaturating and non-desaturating patients, and we use the widely used Physionet Apnea Dataset for a meaningful comparison with prior work. Our system combines features extracted from the Heart-Rate Variability (HRV) and SpO2, and it explores their potential to characterize desaturating and non-desaturating events. The HRV-based features include spectral, cepstral, and nonlinear information (Detrended Fluctuation Analysis (DFA) and Recurrence Quantification Analysis (RQA)). SpO2-based features include temporal (variance) and spectral information. The features feed a Linear Discriminant Analysis (LDA) classifier. The goal is to evaluate the effect of using these features either individually or in combination, especially in non-desaturating patients. The main results for the detection of apneic events are: (a) Physionet success rate of 96.19%, sensitivity of 95.74% and specificity of 95.25% (Area Under Curve (AUC): 0.99); (b) HuGCDN2014-OXI of 87.32%, 83.81% and 88.55% (AUC: 0.934), respectively. The best results for the global diagnosis of OSA patients (HuGCDN2014-OXI) are: success rate of 95.74%, sensitivity of 100%, and specificity of 89.47%. We conclude that combining both features is the most accurate option, especially when there are non-desaturating patterns among the recordings under study.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Síndromes da Apneia do Sono / Apneia Obstrutiva do Sono Tipo de estudo: Diagnostic_studies / Risk_factors_studies / Screening_studies Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Espanha País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Síndromes da Apneia do Sono / Apneia Obstrutiva do Sono Tipo de estudo: Diagnostic_studies / Risk_factors_studies / Screening_studies Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Espanha País de publicação: Suíça