Your browser doesn't support javascript.
loading
A deep learning approach for medication disposition and corresponding attributes extraction.
Gan, Qiwei; Hu, Mengke; Peterson, Kelly S; Eyre, Hannah; Alba, Patrick R; Bowles, Annie E; Stanley, Johnathan C; DuVall, Scott L; Shi, Jianlin.
Afiliação
  • Gan Q; VA Salt Lake City Health Care System, 500, Foothill Boulevard, Salt Lake City 84148, USA; Division of Epidemiology, University of Utah, 295 Chipeta Way, Salt Lake City 84132, USA.
  • Hu M; VA Salt Lake City Health Care System, 500, Foothill Boulevard, Salt Lake City 84148, USA; Division of Epidemiology, University of Utah, 295 Chipeta Way, Salt Lake City 84132, USA.
  • Peterson KS; Division of Epidemiology, University of Utah, 295 Chipeta Way, Salt Lake City 84132, USA; Veterans Health Administration Office of Analytics and Performance Integration, 500, Foothill Boulevard, Salt Lake City 84148, USA.
  • Eyre H; VA Salt Lake City Health Care System, 500, Foothill Boulevard, Salt Lake City 84148, USA; Division of Epidemiology, University of Utah, 295 Chipeta Way, Salt Lake City 84132, USA.
  • Alba PR; VA Salt Lake City Health Care System, 500, Foothill Boulevard, Salt Lake City 84148, USA; Division of Epidemiology, University of Utah, 295 Chipeta Way, Salt Lake City 84132, USA.
  • Bowles AE; VA Salt Lake City Health Care System, 500, Foothill Boulevard, Salt Lake City 84148, USA; Division of Epidemiology, University of Utah, 295 Chipeta Way, Salt Lake City 84132, USA.
  • Stanley JC; VA Salt Lake City Health Care System, 500, Foothill Boulevard, Salt Lake City 84148, USA; Division of Epidemiology, University of Utah, 295 Chipeta Way, Salt Lake City 84132, USA.
  • DuVall SL; VA Salt Lake City Health Care System, 500, Foothill Boulevard, Salt Lake City 84148, USA; Division of Epidemiology, University of Utah, 295 Chipeta Way, Salt Lake City 84132, USA.
  • Shi J; VA Salt Lake City Health Care System, 500, Foothill Boulevard, Salt Lake City 84148, USA; Division of Epidemiology, University of Utah, 295 Chipeta Way, Salt Lake City 84132, USA. Electronic address: jianlin.shi@utah.edu.
J Biomed Inform ; 143: 104391, 2023 07.
Article em En | MEDLINE | ID: mdl-37196988
OBJECTIVE: This article summarizes our approach to extracting medication and corresponding attributes from clinical notes, which is the focus of track 1 of the 2022 National Natural Language Processing (NLP) Clinical Challenges(n2c2) shared task. METHODS: The dataset was prepared using Contextualized Medication Event Dataset (CMED), including 500 notes from 296 patients. Our system consisted of three components: medication named entity recognition (NER), event classification (EC), and context classification (CC). These three components were built using transformer models with slightly different architecture and input text engineering. A zero-shot learning solution for CC was also explored. RESULTS: Our best performance systems achieved micro-average F1 scores of 0.973, 0.911, and 0.909 for the NER, EC, and CC, respectively. CONCLUSION: In this study, we implemented a deep learning-based NLP system and demonstrated that our approach of (1) utilizing special tokens helps our model to distinguish multiple medications mentions in the same context; (2) aggregating multiple events of a single medication into multiple labels improves our model's performance.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aprendizado Profundo Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Biomed Inform Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Aprendizado Profundo Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: J Biomed Inform Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos