Your browser doesn't support javascript.
loading
Computational design of dynamic receptor-peptide signaling complexes applied to chemotaxis.
Jefferson, Robert E; Oggier, Aurélien; Füglistaler, Andreas; Camviel, Nicolas; Hijazi, Mahdi; Villarreal, Ana Rico; Arber, Caroline; Barth, Patrick.
Afiliação
  • Jefferson RE; Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
  • Oggier A; Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland.
  • Füglistaler A; Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
  • Camviel N; Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland.
  • Hijazi M; Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland.
  • Villarreal AR; Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland.
  • Arber C; Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland.
  • Barth P; Department of Oncology UNIL-CHUV, University Hospital Lausanne (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland.
Nat Commun ; 14(1): 2875, 2023 05 19.
Article em En | MEDLINE | ID: mdl-37208363
Engineering protein biosensors that sensitively respond to specific biomolecules by triggering precise cellular responses is a major goal of diagnostics and synthetic cell biology. Previous biosensor designs have largely relied on binding structurally well-defined molecules. In contrast, approaches that couple the sensing of flexible compounds to intended cellular responses would greatly expand potential biosensor applications. Here, to address these challenges, we develop a computational strategy for designing signaling complexes between conformationally dynamic proteins and peptides. To demonstrate the power of the approach, we create ultrasensitive chemotactic receptor-peptide pairs capable of eliciting potent signaling responses and strong chemotaxis in primary human T cells. Unlike traditional approaches that engineer static binding complexes, our dynamic structure design strategy optimizes contacts with multiple binding and allosteric sites accessible through dynamic conformational ensembles to achieve strongly enhanced signaling efficacy and potency. Our study suggests that a conformationally adaptable binding interface coupled to a robust allosteric transmission region is a key evolutionary determinant of peptidergic GPCR signaling systems. The approach lays a foundation for designing peptide-sensing receptors and signaling peptide ligands for basic and therapeutic applications.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos / Quimiotaxia Limite: Humans Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Suíça País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peptídeos / Quimiotaxia Limite: Humans Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Suíça País de publicação: Reino Unido