Your browser doesn't support javascript.
loading
Relationship between mechanical load and surface erosion degradation of a shape memory elastomer poly(glycerol-dodecanoate) for soft tissue implant.
Jin, Kaixiang; Li, Hanqin; Liang, Mingkai; Li, Yuqi; Wang, Lizhen; Fan, Yubo.
Afiliação
  • Jin K; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China.
  • Li H; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China.
  • Liang M; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China.
  • Li Y; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China.
  • Wang L; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China.
  • Fan Y; State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100083, China.
Regen Biomater ; 10: rbad050, 2023.
Article em En | MEDLINE | ID: mdl-37250974
ABSTRACT
Poly(glycerol-dodecanoate) (PGD) has aroused increasing attention in biomedical engineering for its degradability, shape memory and rubber-like mechanical properties, giving it potential to fabricate intelligent implants for soft tissues. Adjustable degradation is important for biodegradable implants and is affected by various factors. The mechanical load has been shown to play an important role in regulating polymer degradation in vivo. An in-depth investigation of PGD degradation under mechanical load is essential for adjusting its degradation behavior after implantation, further guiding to regulate degradation behavior of soft tissue implants made by PGD. In vitro degradation of PGD under different compressive and tensile load has proceeded in this study and describes the relationships by empirical equations. Based on the equations, a continuum damage model is designed to simulate surface erosion degradation of PGD under stress through finite element analysis, which provides a protocol for PGD implants with different geometric structures at varied mechanical conditions and provides solutions for predicting in vivo degradation processes, stress distribution during degradation and optimization of the loaded drug release.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Regen Biomater Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Regen Biomater Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China