Your browser doesn't support javascript.
loading
The orbital eccentricity distribution of planets orbiting M dwarfs.
Sagear, Sheila; Ballard, Sarah.
Afiliação
  • Sagear S; Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611.
  • Ballard S; Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL 32611.
Proc Natl Acad Sci U S A ; 120(23): e2217398120, 2023 Jun 06.
Article em En | MEDLINE | ID: mdl-37252955
We investigate the underlying distribution of orbital eccentricities for planets around early-to-mid M dwarf host stars. We employ a sample of 163 planets around early- to mid-M dwarfs across 101 systems detected by NASA's Kepler Mission. We constrain the orbital eccentricity for each planet by leveraging the Kepler lightcurve together with a stellar density prior, constructed using metallicity from spectroscopy, Ks magnitude from 2MASS, and stellar parallax from Gaia. Within a Bayesian hierarchical framework, we extract the underlying eccentricity distribution, assuming alternately Rayleigh, half-Gaussian, and Beta functions for both single- and multi-transit systems. We described the eccentricity distribution for apparently single-transiting planetary systems with a Rayleigh distribution with [Formula: see text], and for multitransit systems with [Formula: see text]. The data suggest the possibility of distinct dynamically warmer and cooler subpopulations within the single-transit distribution: The single-transit data prefer a mixture model composed of two distinct Rayleigh distributions with [Formula: see text] and [Formula: see text] over a single Rayleigh distribution, with 7:1 odds. We contextualize our findings within a planet formation framework, by comparing them to analogous results in the literature for planets orbiting FGK stars. By combining our derived eccentricity distribution with other M dwarf demographic constraints, we estimate the underlying eccentricity distribution for the population of early- to mid-M dwarf planets in the local neighborhood.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos