Your browser doesn't support javascript.
loading
Deviation From Normative Whole Brain and Deep Gray Matter Growth in Children With MOGAD, MS, and Monophasic Seronegative Demyelination.
Fadda, Giulia; Cardenas de la Parra, Alonso; O'Mahony, Julia; Waters, Patrick; Yeh, E Ann; Bar-Or, Amit; Marrie, Ruth Ann; Narayanan, Sridar; Arnold, Douglas L; Collins, D Louis; Banwell, Brenda.
Afiliação
  • Fadda G; From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health S
  • Cardenas de la Parra A; From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health S
  • O'Mahony J; From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health S
  • Waters P; From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health S
  • Yeh EA; From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health S
  • Bar-Or A; From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health S
  • Marrie RA; From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health S
  • Narayanan S; From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health S
  • Arnold DL; From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health S
  • Collins DL; From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health S
  • Banwell B; From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health S
Neurology ; 101(4): e425-e437, 2023 07 25.
Article em En | MEDLINE | ID: mdl-37258297
BACKGROUND AND OBJECTIVES: Pediatric-acquired demyelination of the CNS associated with antibodies directed against myelin oligodendrocyte glycoprotein (MOG; MOG antibody-associated disease [MOGAD]) occurs as a monophasic or relapsing disease and with variable but often extensive T2 lesions in the brain. The impact of MOGAD on brain growth during maturation is unknown. We quantified the effect of pediatric MOGAD on brain growth trajectories and compared this with the growth trajectories of age-matched and sex-matched healthy children and children with multiple sclerosis (MS, a chronic relapsing disease known to lead to failure of normal brain growth and to loss of brain volume) and monophasic seronegative demyelination. METHODS: We included children enrolled at incident attack in the prospective longitudinal Canadian Pediatric Demyelinating Disease Study who were recruited at the 3 largest enrollment sites, underwent research brain MRI scans, and were tested for serum MOG-IgG. Children seropositive for MOG-IgG were diagnosed with MOGAD. MS was diagnosed per the 2017 McDonald criteria. Monophasic seronegative demyelination was confirmed in children with no clinical or MRI evidence of recurrent demyelination and negative results for MOG-IgG and aquaporin-4-IgG. Whole and regional brain volumes were computed through symmetric nonlinear registration to templates. We computed age-normalized and sex-normalized z scores for brain volume using a normative dataset of 813 brain MRI scans obtained from typically developing children and used mixed-effect models to assess potential deviation from brain growth trajectories. RESULTS: We assessed brain volumes of 46 children with MOGAD, 26 with MS, and 51 with monophasic seronegative demyelinating syndrome. Children with MOGAD exhibited delayed (p < 0.001) age-expected and sex-expected growth of thalamus, caudate, and globus pallidus, normalized for the whole brain volume. Divergence from expected growth was particularly pronounced in the first year postonset and was detected even in children with monophasic MOGAD. Thalamic volume abnormalities were less pronounced in children with MOGAD compared with those in children with MS. DISCUSSION: The onset of MOGAD during childhood adversely affects the expected trajectory of growth of deep gray matter structures, with accelerated changes in the months after an acute attack. Further studies are required to better determine the relative impact of monophasic vs relapsing MOGAD and whether relapsing MOGAD with attacks isolated to the optic nerves or spinal cord affects brain volume over time.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neuromielite Óptica / Esclerose Múltipla Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: America do norte Idioma: En Revista: Neurology Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neuromielite Óptica / Esclerose Múltipla Tipo de estudo: Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans País/Região como assunto: America do norte Idioma: En Revista: Neurology Ano de publicação: 2023 Tipo de documento: Article País de publicação: Estados Unidos