Your browser doesn't support javascript.
loading
Epigenetic Histone Methylation of PPARγ and CPT1A Signaling Contributes to Betahistine Preventing Olanzapine-Induced Dyslipidemia.
Su, Yueqing; Deng, Chao; Liu, Xuemei; Lian, Jiamei.
Afiliação
  • Su Y; Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynaecology and Paediatrics, Fujian Medical University, Fuzhou 350005, China.
  • Deng C; Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
  • Liu X; School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia.
  • Lian J; Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia.
Int J Mol Sci ; 24(11)2023 May 23.
Article em En | MEDLINE | ID: mdl-37298094
ABSTRACT
As a partial histamine H1 receptor agonist and H3 antagonist, betahistine has been reported to partially prevent olanzapine-induced dyslipidemia and obesity through a combination therapy, although the underlying epigenetic mechanisms are still not known. Recent studies have revealed that histone regulation of key genes for lipogenesis and adipogenesis in the liver is one of the crucial mechanisms for olanzapine-induced metabolic disorders. This study investigated the role of epigenetic histone regulation in betahistine co-treatment preventing dyslipidemia and fatty liver caused by chronic olanzapine treatment in a rat model. In addition to abnormal lipid metabolism, the upregulation of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding protein (C/EBPα), as well as the downregulation of carnitine palmitoyltransferase 1A (CPT1A) in the liver induced by olanzapine, were significantly attenuated by betahistine co-treatment. In addition, betahistine co-treatment significantly enhanced the global expression of H3K4me and the enrichment of H3K4me binding on the promoter of Cpt1a gene as revealed by ChIP-qPCR, but inhibited the expression of one of its site-specific demethylases, lysine (K)-specific demethylase 1A (KDM1A). Betahistine co-treatment also significantly enhanced the global expression of H3K9me and the enrichment of H3K9me binding on the promoter of the Pparg gene, but inhibited the expression of two of its site-specific demethylases, lysine demethylase 4B (KDM4B) and PHD finger protein 2 (PHF2). These results suggest that betahistine attenuates abnormal adipogenesis and lipogenesis triggered by olanzapine through modulating hepatic histone methylation, and thus inhibiting the PPARγ pathway-mediated lipid storage, while at the same time promoting CP1A-mediated fatty acid oxidation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Beta-Histina / Dislipidemias Limite: Animals Idioma: En Revista: Int J Mol Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Beta-Histina / Dislipidemias Limite: Animals Idioma: En Revista: Int J Mol Sci Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China