Your browser doesn't support javascript.
loading
Mesoporous Mixed-Metal-Organic Framework Incorporating a [Ru(Phen)3]2+ Photosensitizer for Highly Efficient Aerobic Photocatalytic Oxidative Coupling of Amines.
Bai, Dongjie; Qiu, Jinlin; Li, Jingzhe; Zhou, Shengbin; Cui, Xiang; Tang, Xiaoliang; Tang, Yu; Liu, Weisheng; Chen, Banglin.
Afiliação
  • Bai D; Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
  • Qiu J; Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
  • Li J; Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
  • Zhou S; Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
  • Cui X; Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China.
  • Tang X; Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
  • Tang Y; Academy of Plateau Science and Sustainability, People's Government of Qinghai Province & Beijing Normal University, College of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810016, China.
  • Liu W; Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
  • Chen B; Frontiers Science Center for Rare Isotopes, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
ACS Appl Mater Interfaces ; 15(25): 30320-30331, 2023 Jun 28.
Article em En | MEDLINE | ID: mdl-37312235
ABSTRACT
[Ru(Phen)3]2+ (phen = phenanthroline) as a very classical photosensitizer possesses strong absorption in the visible range and facilitates photoinduced electron transfer, which plays a vital role in regulating photochemical reactions. However, it remains a significant challenge to utilize more adequately and exploit more efficiently the ruthenium-based materials due to the uniqueness, scarcity, and nonrenewal of the noble metal. Here, we integrate the intrinsic advantages of the ruthenium-based photosensitizer and mesoporous metal-organic frameworks (meso-MOFs) into a [Ru(Phen)3]2+ photosensitizer-embedded heterometallic Ni(II)/Ru(II) meso-MOF (LTG-NiRu) via the metalloligand approach. LTG-NiRu, with an extremely robust framework and a large one-dimensional (1D) channel, not only makes ruthenium photosensitizer units anchored in the inner wall of meso-MOF tubes to circumvent the problem of product/catalyst separation and recycling of catalysts in heterogeneous systems but also exhibits exceptional activities for the aerobic photocatalytic oxidative coupling of amine derivatives as a general photocatalyst. The conversion of the light-induced oxidative coupling reaction for various benzylamines is ∼100% in 1 h, and more than 20 chemical products generated by photocatalytic oxidative cycloaddition of N-substituted maleimides and N,N-dimethylaniline can be synthesized easily in the presence of LTG-NiRu upon visible light irradiation. Moreover, recycling experiments demonstrate that LTG-NiRu is an excellent heterogeneous photocatalyst with high stability and excellent reusability. LTG-NiRu represents a great potential photosensitizer-based meso-MOF platform with an efficient aerobic photocatalytic oxidation function that is convenient for gram-scale synthesis.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Assunto da revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China