Your browser doesn't support javascript.
loading
Antibacterial PLA/Mg composite with enhanced mechanical and biological performance for biodegradable orthopedic implants.
Lee, Hyun; Shin, Da Yong; Na, Yuhyun; Han, Ginam; Kim, Joodeok; Kim, Nahyun; Bang, Seo-Jun; Kang, Hyeong Seok; Oh, SeKwon; Yoon, Chang-Bun; Park, Jungwon; Kim, Hyoun-Ee; Jung, Hyun-Do; Kang, Min-Ho.
Afiliação
  • Lee H; Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
  • Shin DY; Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
  • Na Y; Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
  • Han G; Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
  • Kim J; School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea.
  • Kim N; Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
  • Bang SJ; Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
  • Kang HS; Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
  • Oh S; Research Institute of Advanced Manufacturing & Materials Technology, Korea Institute of Industrial Technology, Incheon 21999, Republic of Korea.
  • Yoon CB; Department of Advanced Materials Engineering, Tech University of Korea, Siheung-si 15073, Republic of Korea.
  • Park J; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea; Center for Nanoparticle Research, Institute of Basic Science (IBS), Seoul 08826, Republic of Korea; Institute of Engineering Research, College of Engineering, Se
  • Kim HE; Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea.
  • Jung HD; Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
  • Kang MH; Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea. Electronic address: mhkang@c
Biomater Adv ; 152: 213523, 2023 Sep.
Article em En | MEDLINE | ID: mdl-37336010
Biodegradability, bone-healing rate, and prevention of bacterial infection are critical factors for orthopedic implants. Polylactic acid (PLA) is a good candidate biodegradable material; however, it has insufficient mechanical strength and bioactivity for orthopedic implants. Magnesium (Mg), has good bioactivity, biodegradability, and sufficient mechanical properties, similar to that of bone. Moreover, Mg has an inherent antibacterial property via a photothermal effect, which generates localized heat, thus preventing bacterial infection. Therefore, Mg is a good candidate material for PLA composites, to improve their mechanical and biological performance and add an antibacterial property. Herein, we fabricated an antibacterial PLA/Mg composite for enhanced mechanical and biological performance with an antibacterial property for application as biodegradable orthopedic implants. The composite was fabricated with 15 and 30 vol% of Mg homogeneously dispersed in PLA without the generation of a defect using a high-shear mixer. The composites exhibited an enhanced compressive strength of 107.3 and 93.2 MPa, and stiffness of 2.3 and 2.5 GPa, respectively, compared with those of pure PLA which were 68.8 MPa and 1.6 GPa, respectively. Moreover, the PLA/Mg composite at 15 vol% Mg exhibited significant improvement of biological performance in terms of enhanced initial cell attachment and cell proliferation, whereas the composite at 30 vol% Mg showed deteriorated cell proliferation and differentiation because of the rapid degradation of the Mg particles. In turn, the PLA/Mg composites exerted an antibacterial effect based on the inherent antibacterial property of Mg as well as the photothermal effect induced by near-infrared (NIR) treatment, which can minimize infection after implantation surgery. Therefore, antibacterial PLA/Mg composites with enhanced mechanical and biological performance may be a candidate material with great potential for biodegradable orthopedic implants.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poliésteres / Magnésio Idioma: En Revista: Biomater Adv Ano de publicação: 2023 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poliésteres / Magnésio Idioma: En Revista: Biomater Adv Ano de publicação: 2023 Tipo de documento: Article País de publicação: Holanda