Your browser doesn't support javascript.
loading
A survey on deep learning for skin lesion segmentation.
Mirikharaji, Zahra; Abhishek, Kumar; Bissoto, Alceu; Barata, Catarina; Avila, Sandra; Valle, Eduardo; Celebi, M Emre; Hamarneh, Ghassan.
Afiliação
  • Mirikharaji Z; Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby V5A 1S6, Canada.
  • Abhishek K; Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby V5A 1S6, Canada.
  • Bissoto A; RECOD.ai Lab, Institute of Computing, University of Campinas, Av. Albert Einstein 1251, Campinas 13083-852, Brazil.
  • Barata C; Institute for Systems and Robotics, Instituto Superior Técnico, Avenida Rovisco Pais, Lisbon 1049-001, Portugal.
  • Avila S; RECOD.ai Lab, Institute of Computing, University of Campinas, Av. Albert Einstein 1251, Campinas 13083-852, Brazil.
  • Valle E; RECOD.ai Lab, School of Electrical and Computing Engineering, University of Campinas, Av. Albert Einstein 400, Campinas 13083-952, Brazil.
  • Celebi ME; Department of Computer Science and Engineering, University of Central Arkansas, 201 Donaghey Ave., Conway, AR 72035, USA. Electronic address: ecelebi@uca.edu.
  • Hamarneh G; Medical Image Analysis Lab, School of Computing Science, Simon Fraser University, Burnaby V5A 1S6, Canada. Electronic address: hamarneh@sfu.ca.
Med Image Anal ; 88: 102863, 2023 08.
Article em En | MEDLINE | ID: mdl-37343323
Skin cancer is a major public health problem that could benefit from computer-aided diagnosis to reduce the burden of this common disease. Skin lesion segmentation from images is an important step toward achieving this goal. However, the presence of natural and artificial artifacts (e.g., hair and air bubbles), intrinsic factors (e.g., lesion shape and contrast), and variations in image acquisition conditions make skin lesion segmentation a challenging task. Recently, various researchers have explored the applicability of deep learning models to skin lesion segmentation. In this survey, we cross-examine 177 research papers that deal with deep learning-based segmentation of skin lesions. We analyze these works along several dimensions, including input data (datasets, preprocessing, and synthetic data generation), model design (architecture, modules, and losses), and evaluation aspects (data annotation requirements and segmentation performance). We discuss these dimensions both from the viewpoint of select seminal works, and from a systematic viewpoint, examining how those choices have influenced current trends, and how their limitations should be addressed. To facilitate comparisons, we summarize all examined works in a comprehensive table as well as an interactive table available online3.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dermatopatias / Neoplasias Cutâneas / Aprendizado Profundo Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Med Image Anal Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Canadá País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Dermatopatias / Neoplasias Cutâneas / Aprendizado Profundo Tipo de estudo: Diagnostic_studies / Prognostic_studies Limite: Humans Idioma: En Revista: Med Image Anal Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Canadá País de publicação: Holanda