Your browser doesn't support javascript.
loading
Tunable, Wide-Temperature, and Macroscale Superlubricity Enabled by Nanoscale Van Der Waals Heterojunction-to-Homojunction Transformation.
Yang, Xing; Li, Ruiyun; Wang, Yongfu; Zhang, Junyan.
Afiliação
  • Yang X; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730 000, China.
  • Li R; Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, China.
  • Wang Y; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou, 730 000, China.
  • Zhang J; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
Adv Mater ; 35(39): e2303580, 2023 Sep.
Article em En | MEDLINE | ID: mdl-37354130
ABSTRACT
Achieving macroscale superlubricity of van der Waals (vdW) nanopowders is particularly challenging, due to the difficulty in forming ordered junctions before friction and the friction-induced complex contact restructuration among multiple nanometer-sized junctions. Here, a facile way is reported to achieve vdW nanopowder-to-heterojunction conversion by graphene edge-oxygen (GEO) incorporation. The GEO effectively weakens the out-of-plane edge-edge and in-plane plane-edge states of the vdW nanopowder, leading to a coexistent structure of nanoscale homojunctions and heterojunctions on the grinding balls. When sliding on diamond-like carbon surfaces, the ball-supported structure governs macroscale superlubricity by heterojunction-to-homojunction transformation among the countless nanoscale junctions. Furthermore, the transformation guides the tunable design of superlubricity, achieving superlubricity (µ ≈ 0.005) at wide ranges of load, velocity, and temperature (-200 to 300 °C). Atomistic simulations reveal the GEO-enhanced conversion of vdW nanopowder to heterojunctions and demonstrate the heterojunction-to-homojunction transformation superlubricity mechanism. The findings are of significance for the macroscopic scale-up and engineering application of structural superlubricity.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Adv Mater Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2023 Tipo de documento: Article País de afiliação: China