Your browser doesn't support javascript.
loading
Does climbazole instigate a threat in the environment as persistent, mobile and toxic compound? Unveiling the occurrence and potential ecological risks of its phototransformation products in the water cycle.
Anagnostopoulou, Kyriaki; Nannou, Christina; Evgenidou, Eleni; Lambropoulou, Dimitra A.
Afiliação
  • Anagnostopoulou K; Department of Chemistry, Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece.
  • Nannou C; Department of Chemistry, International Hellenic University, Kavala, GR 65404, Greece.
  • Evgenidou E; Department of Chemistry, Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece.
  • Lambropoulou DA; Department of Chemistry, Aristotle University of Thessaloniki, GR 54124, Thessaloniki, Greece; Centre for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center, Thessaloniki, 10th km Thessaloniki-Thermi Rd, GR 57001, Greece. Electronic address: dlambro@chem.auth.gr.
J Hazard Mater ; 458: 131854, 2023 09 15.
Article em En | MEDLINE | ID: mdl-37354716
ABSTRACT
Persistent, mobile, and toxic chemicals (PMT), such as the antimycotic climbazole-(CBZ), proliferate in water cycle and imperil drinking water quality, sparking off research about their environmental fate. Unlike the parent compound, its transformation products-(TPs) are scarcely investigated, much less as PMTs. To this end, phototransformation of CBZ was investigated. A novel suspect-screening workflow was developed and optimized by cross-comparing the results of the identified photo-TPs against literature data to create an enhanced HRMS-database for environmental investigations of CBZ/TPs in the water cycle. In total, 24 TPs were identified, 14 of which are reported for the first time. Isomerism, dechlorination, hydroxylation, and cleavage of the ether or C-N bond are suggested as the main transformation routes. A screening of CBZ/TPs was conducted in wastewater, leachates, surface, and groundwater, revealing a maximum concentration of 464.8 ng/L in groundwater. In silico and in vitro methods were used for toxicity assessment, indicating toxicity for CBZ and some TPs. Seemingly, CBZ is rightly considered as PMT, and a higher potential to occur in surface or groundwater than non-PM chemicals appears. Likewise, the occurrence of TPs due to PMT properties or emission patterns was evaluated.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Água Subterrânea Tipo de estudo: Etiology_studies / Risk_factors_studies Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Grécia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Água Subterrânea Tipo de estudo: Etiology_studies / Risk_factors_studies Idioma: En Revista: J Hazard Mater Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2023 Tipo de documento: Article País de afiliação: Grécia